Exam 15: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the exact area of the surface. z=x2+2y,0x1,0y2z = x ^ { 2 } + 2 y , 0 \leq x \leq 1,0 \leq y \leq 2 .

(Multiple Choice)
4.8/5
(24)

Find the average value of f(x,y)=2x2yf ( x , y ) = 2 x ^ { 2 } y over the rectangle with vertices (1,0),(1,5),(1,5),(1,0)( - 1,0 ) , ( - 1,5 ) , ( 1,5 ) , ( 1,0 ) .

(Short Answer)
4.9/5
(23)

Use polar coordinates to find the volume of the sphere of radius 33 . Round to two decimal places.

(Multiple Choice)
4.8/5
(37)

Evaluate the double integral. D(4xy)dA\iint _ { D } ( 4 x - y ) d A DD is bounded by the circle with center the origin and radius 3636 .

(Short Answer)
5.0/5
(38)

Evaluate the double integral R3x2dA\iint _ { R } 3 x ^ { 2 } d A , where RR is the region bounded by the graphs of y=(x1)2y = ( x - 1 ) ^ { 2 } and y=x+3y = - x + 3 .

(Short Answer)
4.8/5
(29)

Sketch the solid bounded by the graphs of the equations z=x2+y2z = x ^ { 2 } + y ^ { 2 } and z=32x2y2z = 32 - x ^ { 2 } - y ^ { 2 } , and then use a triple integral to find the volume of the solid.

(Short Answer)
4.7/5
(34)

Find the mass of the lamina that occupies the region D and has the given density function, if D is bounded by the parabola x=y2x = y ^ { 2 } and the line y=x2y = x - 2 . ρ(x,y)=3\rho ( x , y ) = 3

(Multiple Choice)
4.8/5
(37)

Set up, but do not evaluate, the iterated integral giving the mass of the solid T bounded by the cylinder x2+z2=9x ^ { 2 } + z ^ { 2 } = 9 in the first octant and the plane z+y=3z + y = 3 having mass density given by ρ(x,y,z)=xy+z4\rho ( x , y , z ) = x y + z ^ { 4 }

(Short Answer)
4.9/5
(39)

Evaluate the double integral. DxcosydA\iint _ { D } x \cos y d A DD is bounded by y=0,y=x2y = 0 , y = x ^ { 2 } and x=6x = 6 .

(Short Answer)
4.8/5
(25)

Calculate the iterated integral. 1403(1+4xy)dxdy\int _ { 1 } ^ { 4 } \int _ { 0 } ^ { 3 } ( 1 + 4 x y ) d x d y

(Short Answer)
4.8/5
(39)

Find the area of the surface. The part of the surface z=xyz = x y that lies within the cylinder x2y2=4x ^ { 2 } - y ^ { 2 } = 4 .

(Short Answer)
4.7/5
(34)

Evaluate the iterated integral by converting to polar coordinates. Round the answer to two decimal places. 3309y2(x2+y2)3/2dxdy\int _ { - 3 } ^ { 3 } \int _ { 0 } ^ { \sqrt { 9 - y ^ { 2 } } } \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 3 / 2 } d x d y .

(Multiple Choice)
4.9/5
(38)

Find the area of the part of the sphere x2+y2+z2=25zx ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 25 z that lies inside the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } .

(Multiple Choice)
4.8/5
(33)

Evaluate D2x2y2dA\iint _ { D } 2 x ^ { 2 } y ^ { 2 } d A where DD is the figure bounded by y=1,y=2,x=0y = 1 , y = 2 , x = 0 and x=yx = y .

(Short Answer)
4.8/5
(33)

Evaluate the iterated integral 04050x3yex2dzdxdy\int _ { 0 } ^ { 4 } \int _ { 0 } ^ { 5 } \int _ { 0 } ^ { x } 3 \sqrt { y } e ^ { - x ^ { 2 } } d z d x d y

(Short Answer)
4.7/5
(37)

Evaluate the integral Bf(x,y,z)dV\iiint _ { B } f ( x , y , z ) d V where f(x,y,z)=xy2+yz2f ( x , y , z ) = x y ^ { 2 } + y z ^ { 2 } and B={(x,y,z)0x2,5y5,0z3}B = \{ ( x , y , z ) \mid 0 \leq x \leq 2 , - 5 \leq y \leq 5,0 \leq z \leq 3 \} with respect to x, y, and z, in that order.

(Multiple Choice)
4.9/5
(40)

Calculate the iterated integral. Round your answer to two decimal places. 060316x+16ydxdy\int _ { 0 } ^ { 6 } \int _ { 0 } ^ { 3 } \sqrt { 16 x + 16 y } d x d y

(Multiple Choice)
4.7/5
(27)

Find the Jacobian of the transformation. x=6αsinβ,y=5αcosβx = 6 \alpha \sin \beta , y = 5 \alpha \cos \beta

(Multiple Choice)
4.7/5
(33)

Evaluate the integral by reversing the order of integration. 016y6ex2dxdy\int _ { 0 } ^ { 1 } \int _ { 6 y } ^ { 6 } e ^ { x ^ { 2 } } d x d y

(Short Answer)
4.8/5
(42)

Use cylindrical coordinates to evaluate 2204x2016x2y2zdzdydx\int _ { - 2 } ^ { 2 } \int _ { 0 } ^ { \sqrt { 4 - x ^ { 2 } } } \int _ { 0 } ^ { \sqrt { 16 - x ^ { 2 } - y ^ { 2 } } } z d z d y d x

(Multiple Choice)
4.8/5
(28)
Showing 81 - 100 of 124
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)