Exam 15: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the volume of the solid bounded in the first octanat bounded by the cylinder z=9y2z = 9 - y ^ { 2 } and the planes x=1x = 1 .

(Short Answer)
4.9/5
(32)

Find the mass and the center of mass of the lamina occupying the region R, where R is the region bounded by the graphs of the equations x=3yx = 3 \sqrt { y } x=0x = 0 and y=1,y = 1 , and having the mass density ρ(x,y)=xy\rho ( x , y ) = x y

(Short Answer)
4.9/5
(28)

Use a double integral to find the area of the region R where R is bounded by the circle r=6sinθr = 6 \sin \theta

(Multiple Choice)
4.9/5
(38)

Evaluate the double integral RxeydA\iint _ { R } x e ^ { y } d A , where RR is the triangular region with vertices (0,0)( 0,0 ) \text {, } (5,5)( 5,5 ) and (0,6)( 0,6 ) .

(Short Answer)
4.9/5
(29)

Find the Jacobian of the transformation. x=u2u+5v,y=v4u5vx = \frac { u } { 2 u + 5 v } , y = \frac { v } { 4 u - 5 v }

(Short Answer)
4.9/5
(42)

Find the center of mass of the lamina of the region shown if the density of the circular lamina is four times that of the rectangular lamina. Find the center of mass of the lamina of the region shown if the density of the circular lamina is four times that of the rectangular lamina.

(Short Answer)
4.8/5
(25)

An electric charge is spread over a rectangular region R={(x,y)0x3,0y4}.R = \{ ( x , y ) \mid 0 \leq x \leq 3,0 \leq y \leq 4 \} . Find the total charge on R if the charge density at a point (x,y)( x , y ) in R (measured in coulombs per square meter) is σ(x,y)=x2+4y3\sigma ( x , y ) = x ^ { 2 } + 4 y ^ { 3 }

(Multiple Choice)
4.7/5
(37)

Sketch the solid whose volume is given by the integral 02π0π/202ρ2sinϕdρdϕdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi / 2 } \int _ { 0 } ^ { 2 } \rho ^ { 2 } \sin \phi d \rho d \phi d \theta Evaluate the integral.

(Short Answer)
4.9/5
(37)

Evaluate the integral Rx2x2+y2dA\iint _ { R } \frac { x ^ { 2 } } { x ^ { 2 } + y ^ { 2 } } d A , where R is the annular region bounded by the circles x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 and x2+y2=16x ^ { 2 } + y ^ { 2 } = 16 by changing to polar coordinates.

(Short Answer)
4.9/5
(27)

Find the area of the surface. The part of the sphere x2+y2+z2=16x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 16 that lies above the plane z=1z = 1 .

(Multiple Choice)
4.7/5
(39)

Evaluate the double integral. D2y2dA\iint _ { D } 2 y ^ { 2 } d A , DD is triangular region with vertices (0,1),(1,2) and (4,1)( 0,1 ) , ( 1,2 ) \text { and } ( 4,1 ) .

(Short Answer)
4.7/5
(30)

Find the area of the surface S where S is the part of the surface x=yzx = y z that lies inside the cylinder y2+z2=16y ^ { 2 } + z ^ { 2 } = 16

(Short Answer)
4.9/5
(30)

Use cylindrical coordinates to evaluate Ex2+y2dV\iiint _ { E } \sqrt { x ^ { 2 } + y ^ { 2 } } d V where E is the region that lies inside the cylinder x2+y2=25x ^ { 2 } + y ^ { 2 } = 25 and between the planes z=6 and z=5z = - 6 \text { and } z = 5 . Round the answer to two decimal places.

(Multiple Choice)
4.9/5
(28)

Calculate the iterated integral. 0x0101y28ysinxdzdydx\int _ { 0 } ^ { x } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - y ^ { 2 } } } 8 y \sin x d z d y d x

(Multiple Choice)
4.9/5
(32)

Use cylindrical or spherical coordinates, whichever seems more appropriate, to evaluate EzdV\iiint _ { E } z d V where E lies above the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } and below the plane z=2z = 2 .

(Multiple Choice)
4.9/5
(30)

Identify the surface with equation r2+z2=4r ^ { 2 } + z ^ { 2 } = 4

(Short Answer)
4.9/5
(38)

Find the area of the surface. The part of the surface z=4x2y2z = 4 - x ^ { 2 } - y ^ { 2 } that lies above the xy-plane.

(Multiple Choice)
4.8/5
(31)

Calculate the double integral. R(12x2y320x4)dA,R={(x,y)0x1,0y4}\iint _ { R } \left( 12 x ^ { 2 } y ^ { 3 } - 20 x ^ { 4 } \right) d A , R = \{ ( x , y ) \mid 0 \leq x \leq 1,0 \leq y \leq 4 \}

(Multiple Choice)
4.8/5
(31)

Find the center of mass of the system comprising masses mk located at the points Pk in a coordinate plane. Assume that mass is measured in grams and distance is measured in centimeters. m1 = 4, m2 = 3, m3 = 2 P1(-3, -3), P2(0, 3), P3(-2, -1)

(Short Answer)
5.0/5
(41)

Use cylindrical coordinates to evaluate Tx2+y2dV\iiint _ { T } \sqrt { x ^ { 2 } + y ^ { 2 } } d V where T is the solid bounded by the cylinder x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and the planes z=2z = 2 and z=5z = 5

(Multiple Choice)
5.0/5
(29)
Showing 21 - 40 of 124
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)