Exam 15: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Use cylindrical coordinates to evaluate the triple integral Exe(x2+y2+z2)2dV\iiint _ { { E } } x e ^ { \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 2 } }dV where E is the solid that lies between the sphere x2+y2+z2=8x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 8 and x2+y2+z2=18x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 18 in the first octant.

(Short Answer)
5.0/5
(41)

A lamina occupies the part of the disk x2+y281x ^ { 2 } + y ^ { 2 } \leq 81 in the first quadrant. Find its center of mass if the density at any point is proportional to its distance from the x-axis.

(Short Answer)
4.9/5
(33)

Evaluate the integral by reversing the order of integration. 01arcsinyπ/28cosx1+cos2xdxdy\int _ { 0 } ^ { 1 } \int _ { \arcsin y } ^ { \pi / 2 } 8 \cos x \sqrt { 1 + \cos ^ { 2 } x } d x d y

(Short Answer)
4.9/5
(36)

Evaluate the integral by making an appropriate change of variables. Round your answer to two decimal places. RxydA\iint _ { R } x y d A R is the parallelogram bounded by the lines 2x3y=5,2x3y=2,5x+2y=5,5x+2y=32 x - 3 y = - 5,2 x - 3 y = - 2,5 x + 2 y = - 5,5 x + 2 y = - 3 .

(Short Answer)
4.8/5
(39)

Use spherical coordinates to evaluate Bx2+y2+z2dV\iiint _ { B } \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } d V where B is the ball x2+y2+z28x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \leq 8

(Multiple Choice)
4.9/5
(39)

Evaluate the triple integral. Round your answer to one decimal place. F4xydV\iiint _ { F } 4 x y d V EE lies under the plane z=5+x+yz = 5 + x + y and above the region in the xyx y -plane bounded by the curves y=x,y=0y = \sqrt { x } , y = 0 , and x=4x = 4 .

(Short Answer)
4.9/5
(29)

Find the area of the surface S where S is the part of the sphere x2+y2+z2=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1 that lies inside the cylinder x2x+y2=0x ^ { 2 } - x + y ^ { 2 } = 0

(Short Answer)
4.9/5
(32)

Evaluate the iterated integral 04x2cosy3dydx\int _ { 0 } ^ { 4 } \int _ { \sqrt { x } } ^ { 2 } \cos y ^ { 3 } d y d x by reversing the order of integration.

(Short Answer)
4.9/5
(29)

Use a triple integral to find the volume of the solid bounded by x=y2x = y ^ { 2 } and the planes z=0z = 0 and x+z=3x + z = 3 .

(Multiple Choice)
4.8/5
(33)

Find the mass and the center of mass of the lamina occupying the region R, where R is the triangular region with vertices (0,0)( 0,0 ) \text {, } (2,5)( 2,5 ) and (4,0)( 4,0 ) , and having the mass density ρ(x,y)=x\rho ( x , y ) = x

(Multiple Choice)
4.8/5
(27)

Compute D36x2y2dA\iint _ { D } \sqrt { 36 - x ^ { 2 } - y ^ { 2 } } d A , where DD is the disk x2+y236x ^ { 2 } + y ^ { 2 } \leq 36 , by first identifying the integral as the volume of a solid.

(Short Answer)
4.9/5
(35)

Find the center of mass of the lamina that occupies the region D and has the given density function, if D is bounded by the parabola y=1x2y = 1 - x ^ { 2 } and the x-axis. ρ(x,y)=4y\rho ( x , y ) = 4 y

(Multiple Choice)
4.9/5
(28)

Use spherical coordinate to find the volume above the cone z2=x2+y2z ^ { 2 } = x ^ { 2 } + y ^ { 2 } and inside sphere x2+y2+z2=2azx ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 2 a z .

(Short Answer)
4.8/5
(31)

Find the area of the surface. Round your answer to three decimal places. z=z = 43\frac { 4 } { 3 } (x2/3+y2/3),0x5,0y3\left( x ^ { 2 / 3 } + y ^ { 2 / 3 } \right) , 0 \leq x \leq 5,0 \leq y \leq 3

(Multiple Choice)
4.8/5
(37)

Calculate the iterated integral. 0ln40ln53e5xydxdy\int _ { 0 } ^ { \ln 4 } \int _ { 0 } ^ { \ln 5 } 3 e ^ { 5 x - y } d x d y

(Short Answer)
4.8/5
(37)

Sketch the region of integration associated with the integral 0x08cosθf(rcosθ,rsinθ)rdrdθ\int _ { 0 } ^ { x } \int _ { 0 } ^ { 8 \cos \theta } f ( r \cos \theta , r \sin \theta ) r d r d \theta

(Short Answer)
4.8/5
(27)

Evaluate Tf(x,y,z)dV\iiint _ { T } f ( x , y , z ) d V where f(x,y,z)=7yf ( x , y , z ) = 7 y and T is the region bounded by the paraboloid y=x2+z2y = x ^ { 2 } + z ^ { 2 } and the plane y=1y = 1

(Multiple Choice)
4.9/5
(28)

Express the triple integral Tf(x,y,z)dV\iiint _ { T } f ( x , y , z ) d V as an iterated integral in six different ways using different orders of integration where T is the solid bounded by the planes x=0x = 0 y=0y = 0 z=0z = 0 and x+7y+8z=56x + 7 y + 8 z = 56

(Short Answer)
4.8/5
(34)

Find the area of the surface S where S is the part of the plane z=2x2+yz = 2 x ^ { 2 } + y that lies above the triangular region with vertices (0,0)( 0,0 ) \text {, } (3,0)( 3,0 ) , and (3,3)( 3,3 )

(Short Answer)
5.0/5
(41)

Use polar coordinates to find the volume of the solid inside the cylinder x2+y2=16x ^ { 2 } + y ^ { 2 } = 16 and the ellipsoid 6x2+6y2+z2=646 x ^ { 2 } + 6 y ^ { 2 } + z ^ { 2 } = 64 .

(Multiple Choice)
4.9/5
(32)
Showing 41 - 60 of 124
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)