Exam 14: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

The radius of a right circular cone is increasing at a rate of 5 in/s while its height is decreasing at a rate of 3.6 in/s. At what rate is the volume of the cone changing when the radius is 108108 in. and the height is 132132 in.?

(Multiple Choice)
4.8/5
(42)

Find the differential of the function z=x+5yx6yz = \frac { x + 5 y } { x - 6 y }

(Short Answer)
4.9/5
(40)

Find the direction in which the function f(x,y)=x4yx3y2f ( x , y ) = x ^ { 4 } y - x ^ { 3 } y ^ { 2 } decreases fastest at the point (2,1)( 2 , - 1 ) .

(Short Answer)
4.9/5
(39)

Find the domain and range of the function g(x,y)=x2+2y2+3g ( x , y ) = x ^ { 2 } + 2 y ^ { 2 } + 3 .

(Multiple Choice)
4.7/5
(33)

Find 2zx2\frac { \partial ^ { 2 } z } { \partial x ^ { 2 } } for z=ytan7xz = y \tan 7 x .

(Short Answer)
4.8/5
(36)

If z=x2xy+7y2z = x ^ { 2 } - x y + 7 y ^ { 2 } and (x,y)( x , y ) changes from (2, 1) to (1.94,1.13)( 1.94,1.13 ) find dz.

(Short Answer)
4.7/5
(39)

Find the direction in which the maximum rate of change of f at the given point occurs. f(x,y)=2sin(xy),(1,0)f ( x , y ) = 2 \sin ( x y ) , ( 1,0 )

(Multiple Choice)
4.8/5
(42)

Find fxf _ { x } for f(x,y)=yxcos(t8)dtf ( x , y ) = \int _ { y } ^ { x } \cos \left( t ^ { 8 } \right) d t .

(Short Answer)
4.8/5
(39)

Use the Chain Rule to find up\frac { \partial u } { \partial p } . u=x+yy+zu = \frac { x + y } { y + z } x=p+5r+7t,y=p5r+7t,z=p+5r7tx = p + 5 r + 7 t , y = p - 5 r + 7 t , z = p + 5 r - 7 t

(Multiple Choice)
4.9/5
(42)

Use the Chain Rule to find dwdt\frac { d w } { d t } w=9x4y3z,x=6t,y=cos7t,z=tsintw = 9 x ^ { 4 } y ^ { 3 } z , \quad x = 6 t , \quad y = \cos 7 t , \quad z = t \sin t

(Multiple Choice)
4.9/5
(32)

Find all the saddle points of the function. f(x,y)=xsiny2f ( x , y ) = x \sin \frac { y } { 2 }

(Multiple Choice)
4.9/5
(41)

Describe the level survaces of the function f(x,y,z)=3x+8y4z+2f ( x , y , z ) = 3 x + 8 y - 4 z + 2 .

(Short Answer)
4.8/5
(25)

Determine the largest set on which the function is continuous. F(x,y)=arctan(10x+8y5)F ( x , y ) = \arctan ( 10 x + 8 \sqrt { y - 5 } )

(Multiple Choice)
4.7/5
(43)

The ellipsoid 4x2+5y2+z2=284 x ^ { 2 } + 5 y ^ { 2 } + z ^ { 2 } = 28 intersects the plane y=2y = 2 in an ellipse. Find parametric equations for the tangent line to this ellipse at the point (1, 2, 2).

(Short Answer)
4.9/5
(40)

At what point is the following function a local minimum? f(x,y)=8x2+5y2f ( x , y ) = 8 x ^ { 2 } + 5 y ^ { 2 }

(Multiple Choice)
4.9/5
(33)

Find the second partial derivatives of the function g(x,y)=2x3y2+9xy36x+8y+5g ( x , y ) = 2 x ^ { 3 } y ^ { 2 } + 9 x y ^ { 3 } - 6 x + 8 y + 5

(Short Answer)
4.7/5
(43)

Use the equation dydx=FxFy=FxFy\frac { d y } { d x } = - \frac { \frac { \partial F } { \partial x } } { \frac { \partial F } { \partial y } } = - \frac { F _ { x } } { F _ { y } } to find dydx\frac { d y } { d x } . cos(x7y)=xe4y\cos ( x - 7 y ) = x e ^ { 4 y }

(Multiple Choice)
4.8/5
(36)

Use a table of numerical values of f (x, y) for (x, y) near the origin to make a conjecture about the value of the limit of f (x, y) as (x,y)(0,0)( x , y ) \rightarrow ( 0,0 ) . f(x,y)=x2y3+x3y271xyf ( x , y ) = \frac { x ^ { 2 } y ^ { 3 } + x ^ { 3 } y ^ { 2 } - 7 } { 1 - x y }

(Multiple Choice)
4.8/5
(34)

Use Lagrange multipliers to find the maximum value of the function subject to the given constraint. f(x,y,z)=14x+8y+12z,x2+y2+z2=101f ( x , y , z ) = 14 x + 8 y + 12 z , x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 101

(Multiple Choice)
4.8/5
(37)

Find h(x,y)=g(f(x,y))h ( x , y ) = g ( f ( x , y ) ) , if g(t)=t2+tg ( t ) = t ^ { 2 } + \sqrt { t } and f(x,y)=7x+6y6f ( x , y ) = 7 x + 6 y - 6 .

(Short Answer)
4.8/5
(40)
Showing 21 - 40 of 132
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)