Exam 14: Partial Derivatives

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the limit. lim(x,y)(8,4)xycos(x2y)\lim _ { ( x , y ) \rightarrow ( 8,4 ) } x y \cos ( x - 2 y )

(Short Answer)
4.9/5
(37)

If f(x,y)=x2+7y2f ( x , y ) = x ^ { 2 } + 7 y ^ { 2 } use the gradient vector f(10,2)\nabla f ( 10,2 ) to find the tangent line to the level curve f(x,y)=136f ( x , y ) = 136 at the point (10,2)( 10,2 ) .

(Multiple Choice)
4.8/5
(25)

Find the differential of the function z=3x3y6z = 3 x ^ { 3 } y ^ { 6 }

(Multiple Choice)
4.8/5
(42)

Use partial derivatives to find the implicit partial derivatives zx\frac { \partial z } { \partial x } and zy\frac { \partial z } { \partial y } 2x2+7xy6x2z+8yz2=02 x ^ { 2 } + 7 x y - 6 x ^ { 2 } z + 8 y z ^ { 2 } = 0

(Short Answer)
4.9/5
(42)

Sketch the graph of the function g(x,y)=x2g ( x , y ) = x ^ { 2 }

(Short Answer)
4.8/5
(31)

Find and classify the relative extrema and saddle points of the function f(x,y)=e2xsin4yf ( x , y ) = e ^ { - 2 x } \sin 4 y for x0x \geq 0 and 0yπ20 \leq y \leq \frac { \pi } { 2 } .

(Multiple Choice)
4.8/5
(29)

Use spherical coordinates to find the limit. lim(x,y)(0,0)6xyzx2+y2+z2\lim _ { ( x , y ) \rightarrow ( 0,0 ) } \frac { 6 x y z } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } }

(Short Answer)
4.8/5
(41)

Find the domain and range of the function h(x,y)=2x9yh ( x , y ) = \sqrt { 2 x - 9 y } .

(Multiple Choice)
4.9/5
(42)

Find the absolute extrema of the function f(x,y)=2x+3y5f ( x , y ) = 2 x + 3 y - 5 on the closed triangular region with vertices (0,0)( 0,0 ) , (5,0)( 5,0 ) and (5,4)( 5,4 ) .

(Multiple Choice)
4.7/5
(35)

Find equations for the tangent plane and the normal line to the surface with equation xy+yz+xz=38x y + y z + x z = 38 at the point P(2,4,5)P ( 2,4,5 )

(Multiple Choice)
4.7/5
(37)

Find the first partial derivatives of the function z=x6y+4z = x ^ { 6 } \sqrt { y + 4 } .

(Short Answer)
4.8/5
(38)

Find an equation of the tangent plane to the given surface at the specified point. z=18x22y2,(3,2,4)z = \sqrt { 18 - x ^ { 2 } - 2 y ^ { 2 } } , ( 3,2 , - 4 )

(Short Answer)
4.8/5
(32)

Determine the largest set on which the function is continuous. f(x,y,z)=xyz6x2+2y2zf ( x , y , z ) = \frac { x y z } { 6 x ^ { 2 } + 2 y ^ { 2 } - z }

(Short Answer)
4.9/5
(27)

Find the gradient of the function f(x,y,z)=x5eyzf ( x , y , z ) = x ^ { 5 } e ^ { y } \sqrt { z } .

(Short Answer)
4.9/5
(37)

If R is the total resistance of three resistors, connected in parallel, with resistances R1,R2,R3R _ { 1 } , R _ { 2 } , R _ { 3 } , then 1R=1R1+1R2+1R3\frac { 1 } { R } = \frac { 1 } { R _ { 1 } } + \frac { 1 } { R _ { 2 } } + \frac { 1 } { R _ { 3 } } . If the resistances are measured in ohms as R1=30Ω,R2=35Ω and R3=50ΩR _ { 1 } = 30 \Omega , R _ { 2 } = 35 \Omega \text { and } R _ { 3 } = 50 \Omega , with a possible error of 0.8% in each case, estimate the maximum error in the calculated value of R.

(Multiple Choice)
5.0/5
(27)

Use Lagrange multipliers to find the minimum value of the function subject to the given constraints. f(x,y,z,t)=5x+5y+5z+5t,5(x2+y2+z2+t2)=4f ( x , y , z , t ) = 5 x + 5 y + 5 z + 5 t , \quad 5 \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } + t ^ { 2 } \right) = 4

(Short Answer)
4.9/5
(40)

Find the equation of the normal line to the given surface at the specified point. z+2=xeycosz,(4,0,0)z + 2 = x e ^ { y } \cos z , ( 4,0,0 )

(Short Answer)
4.9/5
(35)

Find the maximum rate of change of f at the given point. f(x,y,z)=x5y3z2,(1,1,1)f ( x , y , z ) = x ^ { 5 } y ^ { 3 } z ^ { 2 } , ( 1 , - 1,1 )

(Short Answer)
4.8/5
(35)

Find the equation of the tangent plane to the given surface at the specified point. z+7=xeycosz,(7,0,0)z + 7 = x e ^ { y } \cos z , ( 7,0,0 )

(Multiple Choice)
4.7/5
(30)

Use partial derivatives to find the implicit partial derivatives zx\frac { \partial z } { \partial x } and zy\frac { \partial z } { \partial y } 2x2+7xy6x2z+8yz2=02 x ^ { 2 } + 7 x y - 6 x ^ { 2 } z + 8 y z ^ { 2 } = 0

(Short Answer)
4.9/5
(33)
Showing 61 - 80 of 132
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)