Exam 13: Vector Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the limit limte4t,1t,7t2t2+1\lim _ { t \rightarrow \infty } \left\langle e ^ { - 4 t } , \frac { 1 } { t } , \frac { 7 t ^ { 2 } } { t ^ { 2 } + 1 } \right\rangle .

(Short Answer)
4.8/5
(39)

Find the unit tangent vector T(t)T ( t ) . r(t)=2sint,4t,2cost\mathbf { r } ( t ) = \langle 2 \sin t , 4 t , 2 \cos t \rangle

(Multiple Choice)
4.8/5
(41)

The curvature of the curve given by the vector function rr is k(t)=r(t)×r(t)r(t)3k ( t ) = \frac { \left| \mathbf { r } ^ { \prime } ( t ) \times \mathbf { r } ^ { \prime \prime } ( t ) \right| } { \left| \mathbf { r } ^ { \prime } ( t ) \right| ^ { 3 } } Use the formula to find the curvature of r(t)=13t,et,et\mathbf { r } ( t ) = \left\langle \sqrt { 13 } t , e ^ { t } , e ^ { - t } \right\rangle at the point (0,1,1)( 0,1,1 ) .

(Multiple Choice)
4.7/5
(38)

Find the scalar tangential and normal components of acceleration of a particle with position vector r(t)=3sinti+3costj+5tk\mathbf { r } ( t ) = 3 \sin t \mathbf { i } + 3 \cos t \mathbf { j } + 5 t \mathbf { k }

(Multiple Choice)
4.8/5
(46)

Find the domain of the vector function r(t)=8ti+1t4j\mathbf { r } ( t ) = 8 t \mathbf { i } + \frac { 1 } { t - 4 } \mathbf { j } .

(Multiple Choice)
4.8/5
(31)

Find the length of the curve r(t)=2titj+tk\mathbf { r } ( t ) = - 2 t \mathbf { i } - t \mathbf { j } + t \mathbf { k } 2t1.- 2 \leq t \leq 1 .

(Multiple Choice)
4.9/5
(42)

Find r(t)\mathbf { r } ^ { \prime } ( t ) and r(t)\mathbf { r } ^ { \prime \prime } ( t ) for r(t)=5ti+4t2j+5t3k\mathbf { r } ( t ) = 5 t \mathbf { i } + 4 t ^ { 2 } \mathbf { j } + 5 t ^ { 3 } \mathbf { k }

(Short Answer)
4.7/5
(33)

A particle moves with position function r(t)=42ti+e4tj+e4tk\mathbf { r } ( t ) = 4 \sqrt { 2 } t \mathbf { i } + e ^ { 4 t } \mathbf { j } + e ^ { - 4 t } \mathbf { k } . Find the acceleration of the particle.

(Short Answer)
4.8/5
(40)

Find the acceleration of a particle with the given position function. r(t)=9sinti+10tj8costk\mathbf { r } ( t ) = 9 \sin t \mathbf { i } + 10 t \mathbf { j } - 8 \cos t \mathbf { k }

(Multiple Choice)
4.8/5
(46)

Sketch the curve of the vector function r(t)=t2,t3,t\mathbf { r } ( t ) = \left\langle t ^ { 2 } , t ^ { 3 } , t \right\rangle t0t \geq 0 and indicate the orientation of the curve.

(Short Answer)
4.8/5
(39)

Let r(t)=6t,(et2)t,ln(t+1)\mathbf { r } ( t ) = \left\langle \sqrt { 6 - t } , \frac { \left( e ^ { t } - 2 \right) } { t } , \ln ( t + 1 ) \right\rangle . Find the domain of rr .

(Multiple Choice)
4.8/5
(30)

Find r(t)\mathbf { r } ^ { \prime } ( t ) and r(t)\mathbf { r } ^ { \prime \prime } ( t ) for r(t)=tcos3tsin3t,tsin4t+cos4t\mathbf { r } ( t ) = \langle t \cos 3 t - \sin 3 t , t \sin 4 t + \cos 4 t \rangle

(Short Answer)
4.9/5
(39)

Two points A and B are located 100 ft apart on a straight line. A particle moves from A toward B with an initial velocity of 9 ft/sec and an acceleration of 12\frac { 1 } { 2 } ft/sec2\mathrm { ft } / \mathrm { sec } ^ { 2 } . Simultaneously, a particle moves from B toward A with an initial velocity of 2 ft/sec and an acceleration of 34\frac { 3 } { 4 } ft/sec2\mathrm { ft } / \mathrm { sec } ^ { 2 } . When will the two particles collide? At what distance from A will the collision take place?

(Short Answer)
4.7/5
(46)

Find r(t)\mathbf { r } ( t ) satisfying the conditions for rt(t)=9e9ti+9etj+etk\mathbf { r } ^ { t } ( t ) = 9 e ^ { 9 t } \mathbf { i } + 9 e ^ { - t } \mathbf { j } + e ^ { t } \mathbf { k } r(0)=ij+9k\mathbf { r } ( 0 ) = \mathbf { i } - \mathbf { j } + 9 \mathbf { k }

(Multiple Choice)
4.9/5
(36)

For the curve given by r(t)=(4sint,5t,4cost)\mathbf { r } ( t ) = (4 \sin t , 5 t , 4 \mathrm { cos } t ) , find the unit normal vector. a(t)=2k,v(0)=10i9j\mathbf { a } ( t ) = 2 \mathbf { k } , \mathbf { v } ( 0 ) = 10 \mathbf { i } - 9 \mathbf { j }

(Multiple Choice)
4.9/5
(36)

Find the point(s) on the graph of y=e11x2y = e ^ { - 11 x ^ { 2 } } at which the curvature is zero.

(Short Answer)
4.9/5
(35)

The helix r1(t)=8costi+sintj+tk\mathbf { r } _ { 1 } ( t ) = 8 \cos t \mathbf { i } + \sin t \mathbf { j } + t \mathbf { k } intersects the curve r2(t)=(8+t)i+10t2j+9t3k\mathbf { r } _ { 2 } ( t ) = ( 8 + t ) \mathbf { i } + 10 t ^ { 2 } \mathbf { j } + 9 t ^ { 3 } \mathbf { k } at the point (8,0,0)( 8,0,0 ) . Find the angle of intersection.

(Multiple Choice)
4.7/5
(41)

Find a vector function that represents the curve of intersection of the two surfaces: The circular cylinder x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 and the parabolic cylinder z=xyz = x y .

(Multiple Choice)
4.9/5
(36)

Find the point of intersection of the tangent lines to the curve r(t)=(sinπt,5sinπt,cosπt)\mathbf { r } ( t ) = ( \sin \pi t , 5 \sin \pi t , \cos \pi t ) , at the points where t=0t = 0 and t=0.5t = 0.5 .

(Short Answer)
4.7/5
(34)

Find the curvature of the curve r(t)=2ti+6tj+9k\mathbf { r } ( t ) = 2 t \mathbf { i } + 6 t \mathbf { j } + 9 \mathbf { k } .

(Multiple Choice)
4.8/5
(32)
Showing 41 - 60 of 93
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)