Exam 13: Vector Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the unit tangent vector for the curve given by r(t)=17t7,13t3,t\mathbf { r } ( t ) = \left\langle \frac { 1 } { 7 } t ^ { 7 } , \frac { 1 } { 3 } t ^ { 3 } , t \right\rangle .

(Multiple Choice)
4.9/5
(36)

Find the length of the curve r(t)=2ti+t2j+lntk\mathbf { r } ( t ) = 2 t \mathbf { i } + t ^ { 2 } \mathbf { j } + \ln t \mathbf { k } 1te31 \leq t \leq e ^ { 3 }

(Multiple Choice)
4.7/5
(31)

A projectile is fired with an initial speed of 700 m/s700 \mathrm {~m} / \mathrm { s } and angle of elevation 6060 ^ { \circ } . Find the range of the projectile.

(Multiple Choice)
4.9/5
(36)

Find the scalar tangential and normal components of acceleration of a particle with position vector r(t)=5ti+(t2+5)j\mathbf { r } ( t ) = 5 t \mathbf { i } + \left( t ^ { 2 } + 5 \right) \mathbf { j }

(Short Answer)
4.8/5
(45)

Sketch the curve of the vector function r(t)=5sinti+4costj\mathbf { r } ( t ) = 5 \sin t \mathbf { i } + 4 \cos t \mathbf { j } , and indicate the orientation of the curve.

(Short Answer)
4.7/5
(45)

What force is required so that a particle of mass mm has the following position function?. r(t)=5t3i+10t2j+7t3kr ( t ) = 5 t ^ { 3 } \mathbf { i } + 10 t ^ { 2 } \mathbf { j } + 7 t ^ { 3 } \mathbf { k }

(Multiple Choice)
4.8/5
(46)

Find r(t)\mathbf { r } ( t ) if r(t)=sinticostj+6tk\mathbf { r } ^ { \prime } ( t ) = \sin t \mathbf { i } - \cos t \mathbf { j } + 6 t \mathbf { k } and r(0)=i+j+5kr ( 0 ) = i + j + 5 k .

(Multiple Choice)
4.7/5
(43)

Find an expression for ddu[x(u)(y(u)×z(u))]\frac { d } { d u } [ x ( u ) \cdot ( y ( u ) \times z ( u ) ) ] .

(Short Answer)
4.9/5
(32)

Find the velocity, acceleration, and speed of an object with position vector r(t)=et{cos2t,sin2t,8}\mathbf { r } ( t ) = e ^ { t } \{ \cos 2 t , \sin 2 t , 8 \} .

(Short Answer)
4.8/5
(32)

Find the position vector of a particle that has the given acceleration and the given initial velocity and position. a(t)=4k,v(0)=i+j20k,r(0)=4i+9j\mathbf { a } ( t ) = - 4 \mathbf { k } , \mathbf { v } ( 0 ) = \mathbf { i } + \mathbf { j } - 20 \mathbf { k } , \mathbf { r } ( 0 ) = 4 \mathbf { i } + 9 \mathbf { j }

(Short Answer)
4.8/5
(35)

Find r(t)\mathrm { r } ( t ) if r(t)=t10i+3t2jt7k\mathbf { r } ^ { \prime } ( t ) = t ^ { 10 } \mathbf { i } + 3 t ^ { 2 } \mathbf { j } - t ^ { 7 } \mathbf { k } and r(0)=jr ( 0 ) = j .

(Short Answer)
5.0/5
(40)

Find the integral (sin7ti+cos7tj+et/5k)dt\int \left( \sin 7 t \mathbf { i } + \cos 7 t \mathbf { j } + e ^ { - t / 5 } \mathbf { k } \right) d t

(Short Answer)
4.9/5
(35)

Find the unit tangent vector T(t)\mathbf { T } ( t ) for r(t)=2ti+6tj+3tk\mathbf { r } ( t ) = 2 t \mathbf { i } + 6 t \mathbf { j } + 3 t \mathbf { k } at t=1t = - 1

(Multiple Choice)
4.9/5
(41)

Let C be a smooth curve defined by r(t)=2i+3tj+2t2k\mathbf { r } ( t ) = 2 \mathbf { i } + 3 t \mathbf { j } + 2 t ^ { 2 } \mathbf { k } , and let T(t)\mathbf { T } ( t ) and N(t)\mathrm { N } ( t ) be the unit tangent vector and unit normal vector to C corresponding to t. The plane determined by T and N is called the osculating plane. Find an equation of the osculating plane of the curve described by r(t)\mathbf { r } ( t ) at t=1t = 1

(Multiple Choice)
4.9/5
(34)

Find the velocity of a particle with the given position function. r(t)=11e9ti+9e13tj\mathbf { r } ( t ) = 11 e ^ { 9 t } \mathbf { i } + 9 e ^ { - 13 t } \mathbf { j }

(Multiple Choice)
4.9/5
(36)

Find the velocity of a particle that has the given acceleration and the given initial velocity. a(t)=3k,v(0)=12i7j\mathbf { a } ( t ) = 3 \mathbf { k } , \mathbf { v } ( 0 ) = 12 \mathbf { i } - 7 \mathbf { j }

(Multiple Choice)
4.8/5
(34)

Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point. x=t11,y=t3,z=t6;(4,4,4)x = t ^ { 11 } , y = t ^ { 3 } , z = t ^ { 6 } ; ( 4,4,4 )

(Multiple Choice)
4.8/5
(43)

Find the following limit. limtarctant,eγt,ln4tt\lim _ { t \rightarrow \infty } \left\langle\arctan t , \mathrm { e } ^ { - \gamma t } , \frac { \ln 4 t } { t } \right\rangle

(Short Answer)
4.8/5
(28)

Find parametric equations for the tangent line to the curve with parametric equations x=2tx = 2 t y=7t2y = 7 t ^ { 2 } z=4t3z = 4 t ^ { 3 } at the point with t=1t = 1

(Multiple Choice)
4.7/5
(35)

Find a vector function that represents the curve of intersection of the two surfaces: The paraboloid z=4x2+9y2z = 4 x ^ { 2 } + 9 y ^ { 2 } and the parabolic cylinder y=x2y = x ^ { 2 } .

(Short Answer)
4.7/5
(39)
Showing 21 - 40 of 93
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)