Exam 13: Vector Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

A particle moves with position function r(t)=(21t7t35)i+21t2j\mathbf { r } ( t ) = \left( 21 t - 7 t ^ { 3 } - 5 \right) \mathbf { i } + 21 t ^ { 2 } \mathbf { j } . Find the tangential component of the acceleration vector.

(Multiple Choice)
4.9/5
(40)

Find a vector function that represents the curve of intersection of the two surfaces: the top half of the ellipsoid x2+5y2+5z2=25x ^ { 2 } + 5 y ^ { 2 } + 5 z ^ { 2 } = 25 and the parabolic cylinder y=x2y = x ^ { 2 } .

(Multiple Choice)
4.8/5
(43)

Evaluate the integral. (e9ti+14tj+lntk)dt\int \left( e ^ { 9 t } \mathbf { i } + 14 t \mathbf { j } + \ln t \mathbf { k } \right) d t

(Multiple Choice)
4.8/5
(42)

At what point on the curve x=t3,y=9t,z=t4x = t ^ { 3 } , y = 9 t , z = t ^ { 4 } is the normal plane parallel to the plane 3x+9y4z=43 x + 9 y - 4 z = 4 ?

(Multiple Choice)
4.7/5
(39)

Find the speed of a particle with the given position function. r(t)=ti+5t2j+3t6kr ( t ) = t \mathbf { i } + 5 t ^ { 2 } \mathbf { j } + 3 t ^ { 6 } \mathbf { k }

(Multiple Choice)
4.9/5
(33)

Find the curvature of the curve r(t)=3sin4ti+3cos4tj+3tk\mathbf { r } ( t ) = 3 \sin 4 t \mathbf { i } + 3 \cos 4 t \mathbf { j } + 3 t \mathbf { k } .

(Multiple Choice)
4.9/5
(36)

Find the integral (2ti+9t2j+7k)dt\int \left( 2 t \mathbf { i } + 9 t ^ { 2 } \mathbf { j } + 7 \mathbf { k } \right) d t

(Multiple Choice)
4.8/5
(33)

Find r(t)\mathbf { r } ^ { \prime } ( t ) for the function given. r(t)=3i+sintj+costk\mathbf { r } ( t ) = 3 \mathbf { i } + \sin t \mathbf { j } + \cos t \mathbf { k }

(Short Answer)
4.9/5
(38)

A ball is thrown at an angle of 4545 ^ { \circ } to the ground. If the ball lands 3030 m away, what was the initial speed of the ball? Let g=9.82 m/sg = 9.82 \mathrm {~m} / \mathrm { s } .

(Multiple Choice)
4.9/5
(32)

Find equations of the normal plane to x=t,y=t2,z=t3x = t , y = t ^ { 2 } , z = t ^ { 3 } at the point (2, 4, 8).

(Short Answer)
4.7/5
(40)

A projectile is fired from a height of 400 ft with an initial speed of 200 ft/sec and an angle of elevation of 3030 ^ { \circ } . a. What are the scalar tangential and normal components of acceleration of the projectile? b. What are the scalar tangential and normal components of acceleration of the projectile when the projectile is at its maximum height?

(Short Answer)
4.9/5
(42)

Find the domain of the vector function r(t)=9t,1t3,lnt\mathbf { r } ( t ) = \left\langle 9 \sqrt { t } , \frac { 1 } { t - 3 } , \ln t \right\rangle .

(Multiple Choice)
5.0/5
(38)

Find the velocity, acceleration, and speed of an object with position function r(t)=3ti+(6t2)j\mathbf { r } ( t ) = 3 t \mathbf { i } + \left( 6 - t ^ { 2 } \right) \mathbf { j } for t=1t = 1 Sketch the path of the object and its velocity and acceleration vectors.

(Short Answer)
4.9/5
(41)
Showing 81 - 93 of 93
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)