Exam 13: Vector Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the scalar tangential and normal components of acceleration of a particle with position vector r(t)=et(cos8t,sin8t,8)\mathbf { r } ( t ) = e ^ { t } ( \cos 8 t , \sin 8 t , 8 )

(Multiple Choice)
4.8/5
(31)

Find the velocity, acceleration, and speed of an object with position function r(t)=sinti+6costj\mathbf { r } ( t ) = \sin t \mathbf { i } + 6 \cos t \mathbf { j } for t=π4t = \frac { \pi } { 4 } Sketch the path of the object and its velocity and acceleration vectors.

(Short Answer)
5.0/5
(32)

Find the unit tangent and unit normal vectors T(t)\mathbf { T } ( t ) and N(t)\mathbf { N } ( t ) for the curve C defined by r(t)=ti+2t2j\mathbf { r } ( t ) = t \mathbf { i } + 2 t ^ { 2 } \mathbf { j } Sketch the graph of C, and show T(t)\mathbf { T } ( t ) and N(t)\mathbf { N } ( t ) for t=1t = 1

(Short Answer)
4.9/5
(43)

Given r(t)=3t2i+4t3j\mathbf { r } ( t ) = 3 t ^ { 2 } \mathbf { i } + 4 t ^ { 3 } \mathbf { j } a. Find r(1)\mathbf { r } ( - 1 ) and r(1)\mathbf { r } ^ { \prime } ( - 1 ) . b. Sketch the curve defined by r and the vectors r(1)\mathbf { r } ( - 1 ) and r(1)\mathbf { r } ^ { \prime } ( - 1 ) on the same set of axes.

(Short Answer)
4.8/5
(38)

Find the velocity, acceleration, and speed of an object with position function r(t)=4sinti+costj\mathbf { r } ( t ) = 4 \sin t \mathbf { i } + \cos t \mathbf { j } for t=π4t = \frac { \pi } { 4 } Sketch the path of the object and its velocity and acceleration vectors.

(Short Answer)
4.9/5
(40)

A particle moves with position function r(t)=4costi+4sintj+4tk\mathbf { r } ( t ) = 4 \cos t \mathbf { i } + 4 \sin t \mathbf { j } + 4 t \mathbf { k } . Find the normal component of the acceleration vector.

(Short Answer)
4.8/5
(35)

The following table gives coordinates of a particle moving through space along a smooth curve. x y z 0.5 5.8 9.1 4.3 1 12.6 14.9 16.8 1.5 25.6 21.2 29.4 2 39.2 39.5 37.9 2.5 42.4 42.4 43 Find the average velocity over the time interval [2.5,1.5][ 2.5,1.5 ] .

(Multiple Choice)
4.8/5
(39)

Sketch the curve of the vector function r(t)=3ti+(3t+8)j\mathbf { r } ( t ) = 3 t \mathbf { i } + ( 3 t + 8 ) \mathbf { j } 1t2- 1 \leq t \leq 2 and indicate the orientation of the curve.

(Short Answer)
4.9/5
(39)

Find the velocity, acceleration, and speed of an object with position vector r(t)=t,8+t,8t}\mathbf { r } ( t ) = \langle \sqrt { t } , 8 + \sqrt { t } , 8 t \} .

(Short Answer)
4.9/5
(45)

Find the limit limt0[(t2+3)i+cos5tj6k]\lim _ { t \rightarrow 0 } \left[ \left( t ^ { 2 } + 3 \right) \mathbf { i } + \cos 5 t \mathbf { j } - 6 \mathbf { k } \right] .

(Multiple Choice)
4.9/5
(47)

Reparametrize the curve with respect to arc length measured from the point where t=0t = 0 in the direction of increasing tt . r(t)=(5+3t)i+(8+9t)j(6t)k\mathbf { r } ( t ) = ( 5 + 3 t ) \mathbf { i } + ( 8 + 9 t ) \mathbf { j } - ( 6 t ) \mathbf { k }

(Multiple Choice)
4.9/5
(43)

Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point. x=cost,y=4e6t,z=4e6t;(1,5,5)x = \cos t , y = 4 e ^ { 6 t } , z = 4 e ^ { - 6 t } ; ( 1,5,5 )

(Multiple Choice)
4.9/5
(41)

Sketch the curve of the vector function r(t)=3ti+(2t+3)j\mathbf { r } ( t ) = 3 t \mathbf { i } + ( 2 t + 3 ) \mathbf { j } 1t2- 1 \leq t \leq 2 and indicate the orientation of the curve.

(Short Answer)
4.9/5
(34)

Sketch the curve of the vector function r(t)=5sinti+6costj\mathbf { r } ( t ) = 5 \sin t \mathbf { i } + 6 \cos t \mathbf { j } , and indicate the orientation of the curve.

(Short Answer)
4.9/5
(35)

Find r(t)\mathbf { r } ^ { \prime \prime } ( t ) for the function given. r(t)=4i+sintj+costk\mathbf { r } ( t ) = 4 \mathbf { i } + \sin t \mathbf { j } + \cos t \mathbf { k }

(Multiple Choice)
4.8/5
(39)

A mortar shell is fired with a muzzle speed of 325 ft/sec. Find the angle of elevation of the mortar if the shell strikes a target located 1500 ft away. Round your answer to 2 decimal places.

(Multiple Choice)
4.9/5
(42)

The torsion of a curve defined by r(t)\mathbf { r } ( t ) is given by τ=(rt×r)rmrt×rt2\tau = \frac { \left( \mathbf { r } ^ { t } \times \mathbf { r } ^ { \prime \prime } \right) \cdot \mathbf { r } ^ { m \prime } } { \left| \mathbf { r } ^ { t } \times \mathbf { r } ^ { \prime t } \right| ^ { 2 } } Find the torsion of the curve defined by r(t)=cos2ti+sin2tj+5tk\mathbf { r } ( t ) = \cos 2 t \mathbf { i } + \sin 2 t \mathbf { j } + 5 t \mathbf { k } .

(Multiple Choice)
4.8/5
(42)

Find parametric equations for the tangent line to the curve with parametric equations x=3tx = 3 t y=7t2y = 7 t ^ { 2 } z=8t3z = 8 t ^ { 3 } at the point with t=1t = 1

(Multiple Choice)
4.7/5
(39)

Find the velocity, acceleration, and speed of an object with position function r(t)=6ti+(5t2)j\mathbf { r } ( t ) = 6 t \mathbf { i } + \left( 5 - t ^ { 2 } \right) \mathbf { j } for t=1t = 1 Sketch the path of the object and its velocity and acceleration vectors.

(Short Answer)
4.8/5
(38)

Find the derivative of the vector function. r(t)=a+tb+t5c\mathbf { r } ( t ) = a + t b + t ^ { 5 } c

(Short Answer)
5.0/5
(37)
Showing 61 - 80 of 93
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)