Exam 6: Inverse Circular Functions and Trigonometric Equations

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Solve the problem. -A rotating beacon is located a distance dd from a long wall. The distance dd is given by d=4tan2πt\mathrm { d } = 4 \tan 2 \pi \mathrm { t } , where tt is the time measured in seconds since the beacon started rotating. Solve the equation for tt .

(Multiple Choice)
4.9/5
(32)

Solve the equation (x in radians and in degrees) for all exact solutions where appropriate. Round approximate answers in radians to four decimal places and approximate answers in degrees to the nearest tenth. - 3cos2θ+2cosθ=13 \cos ^ { 2 } \theta + 2 \cos \theta = 1

(Multiple Choice)
4.7/5
(32)

Provide an appropriate response. -  True or false? The statement sin(sin1x)=x for all real numbers in the interval xπ\text { True or false? The statement } \sin \left( \sin ^ { - 1 } x \right) = x \text { for all real numbers in the interval } \leq x \leq \pi \text {. }

(True/False)
4.9/5
(38)

Use a calculator to give the real number value. Round the answer to 7 decimal places. - y=cos1(0.9397)y = \cos ^ { - 1 } ( - 0.9397 )

(Multiple Choice)
4.7/5
(36)

Write the following as an algebraic expression in u, u > 0. - sin(arctanu)\sin ( \arctan u )

(Multiple Choice)
4.9/5
(40)

Solve the equation (x in radians and in degrees) for all exact solutions where appropriate. Round approximate answers in radians to four decimal places and approximate answers in degrees to the nearest tenth. - sin2x+sinx=0\sin ^ { 2 } x + \sin x = 0

(Multiple Choice)
4.7/5
(29)

Solve the equation (x in radians and in degrees) for all exact solutions where appropriate. Round approximate answers in radians to four decimal places and approximate answers in degrees to the nearest tenth. - tanx(tanx2)=6\tan x ( \tan x - 2 ) = 6

(Multiple Choice)
4.7/5
(35)

Solve the problem. -It can be shown that if the angle of elevation from an observer to the top of an object is A and the angle of elevation dft\mathrm { d } \mathrm { ft } closer is B\mathrm { B } , then the distance from the object to the closest point of observation is given by D=dcotBcotAcotBft\mathrm { D } = \frac { \mathrm { d } \cot \mathrm { B } } { \cot \mathrm { A } - \cot \mathrm { B } } \mathrm { ft } \text {. } Find BB if D=20ft,d=30ftD = 20 \mathrm { ft } , \mathrm { d } = 30 \mathrm { ft } , and A=51A = 51 ^ { \circ } . Give your answer in degrees to the nearest hundredth.

(Multiple Choice)
4.8/5
(33)

Solve the equation for x, where x is restricted to the given interval. - y=7sinx, for x in [π2,π2]y = 7 \sin x \text {, for } x \text { in } \left[ - \frac { \pi } { 2 } , \frac { \pi } { 2 } \right]

(Multiple Choice)
4.9/5
(30)

Give the degree measure of . - θ=arcsin(12)\theta = \arcsin \left( - \frac { 1 } { 2 } \right)

(Multiple Choice)
4.8/5
(31)

Solve the equation for exact solutions over the interval [0, 2 [0,2π)[ 0,2 \pi ) - tanx+secx=1\tan x + \sec x = 1

(Multiple Choice)
4.8/5
(44)

Give the exact value of the expression. - csc(csc13)\csc \left( \csc ^ { - 1 } \sqrt { 3 } \right)

(Multiple Choice)
4.8/5
(35)

Use a calculator to give the real number value. Round the answer to 7 decimal places. - y=tan1(0.5774)\mathrm { y } = \tan ^ { - 1 } ( 0.5774 )

(Multiple Choice)
4.7/5
(29)

Solve the problem. -The range r of a projectile is given by r=132v2sin2θ,\mathrm { r } = \frac { 1 } { 32 } \mathrm { v } ^ { 2 } \sin 2 \theta , where v\mathrm { v } is the initial velocity and θ\theta is the angle of elevation. If rr is to be 3000ft3000 \mathrm { ft } and v=2000ft/sec\mathrm { v } = 2000 \mathrm { ft } / \mathrm { sec } , what must the angle of elevation be? Give your answer in degrees to the nearest hundredth.

(Multiple Choice)
4.8/5
(28)

Solve the equation in the interval [0°, 360°). Give solutions to the nearest tenth, if necessary. - sin2θ=sinθ\sin 2 \theta = - \sin \theta

(Multiple Choice)
4.9/5
(33)

Solve the problem. -The weekly sales in thousands of items of a product has a seasonal sales record approximated by n=84.05+15.8sinπt24\mathrm { n } = 84.05 + 15.8 \sin \frac { \pi \mathrm { t } } { 24 } ( t\mathrm { t } is time in weeks with t=1\mathrm { t } = 1 referring to the first week in the year). During which week(s) will the sales equal 91,950 items?

(Multiple Choice)
4.7/5
(34)

Use the parallelogram rule to find the magnitude of the resultant force for the two forces shown in the figure. Round to one decimal place. -Explain what is wrong with the following solution for the equation tan3θ=3\tan 3 \theta = \sqrt { 3 } in the interval [0,2π)[ 0,2 \pi ) . tan3θ=3\tan 3 \theta = \sqrt { 3 } tanθ=33\tan \theta = \frac { \sqrt { 3 } } { 3 } θ=π6 or θ=7π6\theta = \frac { \pi } { 6 } \text { or } \theta = \frac { 7 \pi } { 6 }

(Essay)
4.9/5
(37)

Solve. -A coil of wire rotating in a magnetic field induces a voltage given by e =20sin(πt4π2)= 20 \sin \left( \frac { \pi t } { 4 } - \frac { \pi } { 2 } \right) , where tt is time in seconds. Find the smallest positive time to produce a voltage of 10210 \sqrt { 2 } . Round values to the nearest hundredth.

(Multiple Choice)
4.9/5
(31)

Solve. -A formula for the up-and-down motion of a weight on a spring is given by S=2sin(km)tS = 2 \sin \left( \frac { \sqrt { \mathrm { k } } } { \mathrm { m } } \right) \mathrm { t } , where k\mathrm { k } is the spring constant, m\mathrm { m } is the mass, and t\mathrm { t } is the time. Solve the equation for t\mathrm { t } .

(Multiple Choice)
4.9/5
(43)

Provide an appropriate response. -  True or false? The statement tan1(tanx)=x for all real numbers in the interval π2<x<π2\text { True or false? The statement } \tan ^ { - 1 } ( \tan x ) = x \text { for all real numbers in the interval } - \frac { \pi } { 2 } < x < \frac { \pi } { 2 } \text {. }

(True/False)
4.9/5
(31)
Showing 21 - 40 of 179
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)