Exam 6: Inverse Circular Functions and Trigonometric Equations

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Solve. -Consider the formula T = 591 - 76 cos 2ϴ, where ϴ is measured in degrees. To the nearest hundredth of a degree, what is the smallest positive value of ϴ for which the value of T will be 577?

(Multiple Choice)
4.9/5
(35)

Solve the equation for exact solutions. - arcsin(yπ6)=π6\arcsin \left( y - \frac { \pi } { 6 } \right) = \frac { \pi } { 6 }

(Multiple Choice)
4.9/5
(24)

Use the parallelogram rule to find the magnitude of the resultant force for the two forces shown in the figure. Round to one decimal place. -Explain what is wrong with the following solution for the equation sin2θ=3\sin 2 \theta = \sqrt { 3 } in the interval [0,2π[ 0,2 \pi ). sin2θ=3\sin 2 \theta = \sqrt { 3 } sinθ=32\sin \theta = \frac { \sqrt { 3 } } { 2 } θ=π3 or θ=2π3\theta = \frac { \pi } { 3 } \text { or } \theta = \frac { 2 \pi } { 3 }

(Essay)
4.9/5
(31)

Solve the equation for exact solutions. - arctanx=arcsin35\arctan x = \arcsin \frac { 3 } { 5 }

(Multiple Choice)
4.9/5
(34)

Solve the equation for solutions in the interval [0, 2 [0,2π)[ 0,2 \pi ) - 23sin4x=32 \sqrt { 3 } \sin 4 x = 3

(Multiple Choice)
4.8/5
(27)

Solve the equation for x, where x is restricted to the given interval. - y=secx4, for x in [0,2π)(2π,4π]y = - \sec \frac { x } { 4 } \text {, for } x \text { in } [ 0,2 \pi ) \cup ( 2 \pi , 4 \pi ]

(Multiple Choice)
4.9/5
(32)

Solve the equation for solutions in the interval [0°, 360°). Round to the nearest degree. - cotθ3=1\cot \frac { \theta } { 3 } = 1

(Multiple Choice)
4.9/5
(37)

33 Solve the equation for solutions over the interval [0,2π)[ 0,2 \pi ) . Write solutions as exact values or to four decimal places, as appropriate. - tan2x+sec2x=2\tan 2 x + \sec 2 x = 2

(Multiple Choice)
4.9/5
(32)

Use the parallelogram rule to find the magnitude of the resultant force for the two forces shown in the figure. Round to one decimal place. -On the given graph of y=cscxy = \csc x sketch the graph of y=csc1xy = \csc ^ { - 1 } x as defined in the text. Give the domain and the range.  Use the parallelogram rule to find the magnitude of the resultant force for the two forces shown in the figure. Round to one decimal place. -On the given graph of  y = \csc x  sketch the graph of  y = \csc ^ { - 1 } x  as defined in the text. Give the domain and the range.

(Essay)
4.8/5
(35)

Provide an appropriate response. -  True or false? The statement cos1(cosx)=x for all real numbers in the interval x\text { True or false? The statement } \cos ^ { - 1 } ( \cos x ) = x \text { for all real numbers in the interval } \rightarrow \infty \leq x \leq \infty \text {. }

(True/False)
4.8/5
(30)

Use a calculator to give the value to the nearest degree. - θ=cos1(0.8910)\theta = \cos ^ { - 1 } ( 0.8910 )

(Multiple Choice)
4.9/5
(34)

Use a calculator to find the value. Give answers as real numbers and round to 4 decimal places, if necessary. - cot(arcsinπ)\cot ( - \arcsin \pi )

(Multiple Choice)
4.8/5
(31)

Solve the equation for solutions in the interval [0, 2 [0,2π).[ 0,2 \pi ) . - sin22x=1\sin ^ { 2 } 2 x = 1

(Multiple Choice)
4.8/5
(23)

Solve the equation (x in radians and in degrees) for all exact solutions where appropriate. Round approximate answers in radians to four decimal places and approximate answers in degrees to the nearest tenth. - cos2x1=0\cos ^ { 2 } x - 1 = 0

(Multiple Choice)
4.9/5
(34)

Solve the equation for solutions in the interval [0, 2 [0,2π)[ 0,2 \pi ) - secx2=cosx2\sec \frac { x } { 2 } = \cos \frac { x } { 2 }

(Multiple Choice)
4.8/5
(34)

Give the degree measure of . - θ=csc1(2)\theta = \csc ^ { - 1 } ( 2 )

(Multiple Choice)
4.9/5
(27)

Solve the problem. -It can be shown that if the angle of elevation from an observer to the top of an object is A and the angle of elevation d ft closer is B, then the height of the object is given by h=dcotAcotBft\mathrm { h } = \frac { \mathrm { d } } { \cot \mathrm { A } - \cot \mathrm { B } } \mathrm { ft } \text {. } Find A\mathrm { A } if h=50ft,d=20ft\mathrm { h } = 50 \mathrm { ft } , \mathrm { d } = 20 \mathrm { ft } , and B=61\mathrm { B } = 61 ^ { \circ } . Give your answer in degrees to the nearest hundredth.

(Multiple Choice)
4.8/5
(44)

Give the exact value of the expression. - csc(sin11220)\csc \left( \sin ^ { - 1 } \frac { 12 } { 20 } \right)

(Multiple Choice)
4.7/5
(28)

Give the degree measure of . - θ=cot1(3)\theta = \cot ^ { - 1 } ( - \sqrt { 3 } )

(Multiple Choice)
4.7/5
(32)

Give the degree measure of . - θ=sec1(2)\theta = \sec ^ { - 1 } ( - \sqrt { 2 } )

(Multiple Choice)
4.9/5
(38)
Showing 81 - 100 of 179
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)