Exam 6: Inverse Circular Functions and Trigonometric Equations

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Solve the equation for exact solutions over the interval [0, 2 [0,2π).[ 0,2 \pi ) . - sin2x+sinx=0\sin ^ { 2 } x + \sin x = 0

(Multiple Choice)
4.8/5
(31)

Solve the equation for x, where x is restricted to the given interval. - y=sinxπy = \sin x - \pi , for xx in [π2,π2]\left[ - \frac { \pi } { 2 } , \frac { \pi } { 2 } \right]

(Multiple Choice)
4.9/5
(39)

Solve the equation for x, where x is restricted to the given interval. - y=5sin8xy = - 5 \sin 8 x , for xx in [π16,π16]\left[ - \frac { \pi } { 16 } , \frac { \pi } { 16 } \right]

(Multiple Choice)
4.8/5
(40)

Solve. -A rotating beacon is located a distance d\mathrm { d } from a long wall. The distance d\mathrm { d } is given by d=2tan2πt\mathrm { d } = 2 \tan 2 \pi \mathrm { t } , where tt is the time measured in seconds since the beacon started rotating. Solve the equation for t\mathrm { t } .

(Multiple Choice)
4.9/5
(34)

Use the parallelogram rule to find the magnitude of the resultant force for the two forces shown in the figure. Round to one decimal place. -Explain why you can find cos1.183\cos 1.183 on your calculator, but cos11.183\cos ^ { - 1 } 1.183 results in an error message.

(Essay)
4.7/5
(39)

Solve the equation for exact solutions. - arcsin2x+2arccosx=π\arcsin 2 x + 2 \arccos x = \pi

(Multiple Choice)
4.9/5
(38)

Solve the equation for solutions in the interval [0°, 360°). Round to the nearest degree. -sin 2ϴ + cos 2ϴ = 1

(Multiple Choice)
4.9/5
(34)

Solve the equation for solutions in the interval [0, 2 [0,2π)[ 0,2 \pi ) - csc3x=0\csc 3 x = 0

(Multiple Choice)
4.7/5
(36)

Use the parallelogram rule to find the magnitude of the resultant force for the two forces shown in the figure. Round to one decimal place. -The equation tanx2+secx2+1=0\tan \frac { x } { 2 } + \sec \frac { x } { 2 } + 1 = 0 has no solution in the interval [0,2π)[ 0,2 \pi ) . Explain what this tells you about the graph of y=tanx2+secx2+1y = \tan \frac { x } { 2 } + \sec \frac { x } { 2 } + 1 .

(Essay)
4.8/5
(45)

Solve the equation for solutions in the interval [0°, 360°). Round to the nearest degree. - 3sec2θ=2\sqrt { 3 } \sec 2 \theta = 2

(Multiple Choice)
4.9/5
(41)

Solve the equation for solutions in the interval [0, 2 [0,2π).[ 0,2 \pi ) . - 2cos2x=1\sqrt { 2 } \cos 2 x = 1

(Multiple Choice)
4.7/5
(44)

Solve the equation for solutions in the interval [0°, 360°). Round to the nearest degree. - sin2θ=12\sin 2 \theta = - \frac { 1 } { 2 }

(Multiple Choice)
4.8/5
(38)

Use a calculator to give the value to the nearest degree. - θ=sin1(0.8830)\theta = \sin ^ { - 1 } ( 0.8830 )

(Multiple Choice)
4.7/5
(29)

Graph the inverse circular function. - y=34arccotxy = \frac { 3 } { 4 } \operatorname { arccot } x  Graph the inverse circular function. - y = \frac { 3 } { 4 } \operatorname { arccot } x

(Multiple Choice)
4.8/5
(38)

Write the following as an algebraic expression in u, u > 0. - sin(arcsecu2+4u)\sin \left( \operatorname { arcsec } \frac { \sqrt { \mathrm { u } ^ { 2 } + 4 } } { \mathrm { u } } \right)

(Multiple Choice)
4.9/5
(28)

Solve the equation in the interval [0°, 360°). Give solutions to the nearest tenth, if necessary. - sin2θsinθ12=0\sin ^ { 2 } \theta - \sin \theta - 12 = 0

(Multiple Choice)
4.9/5
(40)

Write the following as an algebraic expression in u, u > 0. - sin(arctanu5)\sin \left( \arctan \frac { \mathrm { u } } { \sqrt { 5 } } \right)

(Multiple Choice)
4.8/5
(31)

Solve. -In an electrical circuit, let V\mathrm { V } represent the electromagnetic force in volts at t\mathrm { t } seconds. Assume V=cos2πt\mathrm { V } = \cos 2 \pi \mathrm { t } . Find the smallest positive value of t\mathrm { t } where 0t120 \leq \mathrm { t } \leq \frac { 1 } { 2 } for V=22\mathrm { V } = \frac { \sqrt { 2 } } { 2 } .

(Multiple Choice)
4.8/5
(36)

Solve the equation in the interval [0°, 360°). Give solutions to the nearest tenth, if necessary. - 2cos2θ+7sinθ=52 \cos 2 \theta + 7 \sin \theta = 5

(Multiple Choice)
4.8/5
(32)

Find the exact value of the real number y. - y=arctan(1)y = \arctan ( 1 )

(Multiple Choice)
4.8/5
(41)
Showing 121 - 140 of 179
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)