Exam 6: Inverse Circular Functions and Trigonometric Equations

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Solve the equation (x in radians and in degrees) for all exact solutions where appropriate. Round approximate answers in radians to four decimal places and approximate answers in degrees to the nearest tenth. - cos2x+2cosx=1\cos ^ { 2 } x + 2 \cos x = - 1

(Multiple Choice)
4.8/5
(31)

Use a calculator to give the value to the nearest degree. - θ=tan1(0.7002)\theta = \tan ^ { - 1 } ( - 0.7002 )

(Multiple Choice)
4.8/5
(36)

Solve the equation (x in radians and in degrees) for all exact solutions where appropriate. Round approximate answers in radians to four decimal places and approximate answers in degrees to the nearest tenth. - 3csc2θ=4cscθ3 \csc ^ { 2 } \theta = 4 \csc \theta

(Multiple Choice)
4.8/5
(41)

Graph the inverse circular function. - y=sin1xy=\sin ^{-1} x  Graph the inverse circular function. - y=\sin ^{-1} x

(Multiple Choice)
4.8/5
(33)

Find the exact value of the real number y. - y=sin1(1)y = \sin ^ { - 1 } ( 1 )

(Multiple Choice)
4.8/5
(31)

Provide an appropriate response. -  True or false? The statement tan(tan1x)=x for all real numbers in the interval xπ\text { True or false? The statement } \tan \left( \tan ^ { - 1 } \mathrm { x } \right) = \mathrm { x } \text { for all real numbers in the interval } \leq x \leq \pi \text {. }

(True/False)
4.8/5
(39)

Solve the equation for x, where x is restricted to the given interval. - y=3tan(2x1)y = 3 \tan ( 2 x - 1 ) , for xx in (12π4,12+π4)\left( \frac { 1 } { 2 } - \frac { \pi } { 4 } , \frac { 1 } { 2 } + \frac { \pi } { 4 } \right)

(Multiple Choice)
4.9/5
(27)

Solve the equation for exact solutions over the interval [0, 2 [0,2π)[ 0,2 \pi ) - 2sin2x=sinx2 \sin ^ { 2 } x = \sin x

(Multiple Choice)
4.8/5
(34)

Solve the equation for exact solutions. - sin1(4x)=π4- \sin ^ { - 1 } ( 4 x ) = \frac { \pi } { 4 }

(Multiple Choice)
4.8/5
(42)

Solve the equation for exact solutions. - cot1x+cot1(1+x)=π4\cot ^ { - 1 } x + \cot ^ { - 1 } ( 1 + x ) = \frac { \pi } { 4 }

(Multiple Choice)
4.9/5
(40)

Solve the equation for exact solutions over the interval [0, 2 [0,2π)[ 0,2 \pi ) - cosx=sinx\cos x = \sin x

(Multiple Choice)
4.8/5
(28)

Solve the equation for exact solutions. - sin1x+cos1(12)=π\sin ^ { - 1 } x + \cos ^ { - 1 } \left( - \frac { 1 } { 2 } \right) = \pi

(Multiple Choice)
4.8/5
(35)

Solve the equation for exact solutions. - arcsinx+2arctanx=π\arcsin x + 2 \arctan x = \pi

(Multiple Choice)
4.9/5
(40)

Use a calculator to give the value to the nearest degree. - θ=sin1(0.2079)\theta = \sin ^ { - 1 } ( 0.2079 )

(Multiple Choice)
4.8/5
(43)

Use a calculator to give the value to the nearest degree. - θ=cos1(0.9397)\theta = \cos ^ { - 1 } ( - 0.9397 )

(Multiple Choice)
4.7/5
(29)

Use a calculator to give the value to the nearest degree. - θ=cos1(0.3907)\theta = \cos ^ { - 1 } ( - 0.3907 )

(Multiple Choice)
4.8/5
(35)

Solve the equation for solutions in the interval [0°, 360°). Round to the nearest degree. - sin2θ+sinθ=0\sin 2 \theta + \sin \theta = 0

(Multiple Choice)
4.9/5
(34)

Find the exact value of the real number y. - y=arcsin(32)y = \arcsin \left( - \frac { \sqrt { 3 } } { 2 } \right)

(Multiple Choice)
4.9/5
(30)

Use a calculator to give the real number value. Round the answer to 7 decimal places. -y = arcsec (2.8842912)

(Multiple Choice)
4.9/5
(39)

Use a calculator to give the value to the nearest degree. - θ=tan1(2.2460)\theta = \tan ^ { - 1 } ( 2.2460 )

(Multiple Choice)
4.8/5
(39)
Showing 41 - 60 of 179
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)