Exam 6: Inverse Circular Functions and Trigonometric Equations

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Solve the equation for solutions in the interval [0°, 360°). Round to the nearest degree. -tan 4ϴ = 0

(Multiple Choice)
4.8/5
(28)

Solve the equation in the interval [0°, 360°). Give solutions to the nearest tenth, if necessary. - 3sin2θsinθ4=03 \sin ^ { 2 } \theta - \sin \theta - 4 = 0

(Multiple Choice)
4.8/5
(37)

Solve the equation for x, where x is restricted to the given interval. - y=cos(x+12), for x in [12,π12]y = \cos ( x + 12 ) \text {, for } x \text { in } [ - 12 , \pi - 12 ]

(Multiple Choice)
4.9/5
(34)

Solve the equation for x, where x is restricted to the given interval. - 3y=tan6x3 y = \tan 6 x , for xx in (π12,π12)\left( - \frac { \pi } { 12 } , \frac { \pi } { 12 } \right)

(Multiple Choice)
4.8/5
(42)

Give the degree measure of . - θ=cot1(3)\theta = \cot ^ { - 1 } ( \sqrt { 3 } )

(Multiple Choice)
4.9/5
(38)

Use a calculator to give the real number value. Round the answer to 7 decimal places. - y=cot1(2.5181552)y = \cot ^ { - 1 } ( 2.5181552 )

(Multiple Choice)
5.0/5
(41)

Solve the problem. -Let (a,b)( a , b ) and (c,d)( c , d ) be two points in the first quadrant, and let θ\theta be the angle between the line segment connecting (a,b)( a , b ) with the origin and the line segment connecting (c,d)( c , d ) with the origin. It can be shown that cosθ=ac+bd(a2+b2)(c2+d2)\cos \theta = \frac { a c + b d } { \sqrt { \left( a ^ { 2 } + b ^ { 2 } \right) \left( c ^ { 2 } + d ^ { 2 } \right) } } Find θ\theta if a=7,b=5,c=2a = 7 , b = 5 , c = 2 , and d=8d = 8 . Give your answer in degrees rounded to the nearest hundredth.

(Multiple Choice)
4.9/5
(34)

Write the following as an algebraic expression in u, u > 0. - tan(arcsecu2+25u)\tan \left( \operatorname { arcsec } \frac { \sqrt { \mathrm { u } ^ { 2 } + 25 } } { \mathrm { u } } \right)

(Multiple Choice)
4.7/5
(22)

Solve the equation in the interval [0°, 360°). Give solutions to the nearest tenth, if necessary. - cscθ=1+cotθ\csc \theta = 1 + \cot \theta

(Multiple Choice)
4.9/5
(37)

Solve the equation for x, where x is restricted to the given interval. - y=4cotx2, for x in (0,2π)y = 4 \cot \frac { x } { 2 } , \text { for } x \text { in } ( 0,2 \pi )

(Multiple Choice)
4.8/5
(33)

Give the exact value of the expression. - sin(arctan2)\sin ( \arctan 2 )

(Multiple Choice)
4.9/5
(34)

Provide an appropriate response. -  True or false? The statement cos(cos1x)=x for all real numbers in the interval x\text { True or false? The statement } \cos \left( \cos ^ { - 1 } x \right) = x \text { for all real numbers in the interval } \infty \leq x \leq \infty \text {. }

(True/False)
4.8/5
(25)

Solve. -In the study of alternating electric current, capacitive voltage is given by VC=i2πfcos2πfftV _ { C } = - \frac { i } { 2 \pi f } \cos 2 \pi f \mathrm { ft } , where f\mathrm { f } is the number of cycles per second, i\mathrm { i } is the maximum current, and t\mathrm { t } is the time in seconds. Solve the equation for t\mathrm { t } .

(Multiple Choice)
4.8/5
(37)

Use the parallelogram rule to find the magnitude of the resultant force for the two forces shown in the figure. Round to one decimal place. -On the given graph of y=cotxy = \cot x sketch the graph of y=cot1xy = \cot ^ { - 1 } x as defined in the text. Give the domain and the range.  Use the parallelogram rule to find the magnitude of the resultant force for the two forces shown in the figure. Round to one decimal place. -On the given graph of  y = \cot x  sketch the graph of  y = \cot ^ { - 1 } x  as defined in the text. Give the domain and the range.

(Essay)
4.9/5
(39)

Solve the equation for exact solutions. - tan1(x+2)+tan1x=tan114\tan ^ { - 1 } ( x + 2 ) + \tan ^ { - 1 } x = \tan ^ { - 1 } \frac { 1 } { 4 }

(Multiple Choice)
4.9/5
(33)

Solve the equation for solutions over the interval [0,2π[ 0,2 \pi ). Write solutions as exact values or to four decimal places, as appropriate. - tan3xsec3x=5\tan 3 x - \sec 3 x = 5

(Multiple Choice)
4.8/5
(25)

Solve the equation in the interval [0°, 360°). Give solutions to the nearest tenth, if necessary. - 4sin2θ=34 \sin ^ { 2 } \theta = 3

(Multiple Choice)
4.8/5
(34)

Solve the equation for exact solutions. - cos1x=sin1513\cos ^ { - 1 } x = \sin ^ { - 1 } \frac { 5 } { 13 }

(Multiple Choice)
4.8/5
(32)

Solve the equation for solutions in the interval [0°, 360°). Round to the nearest degree. - tan22θ=5\tan ^ { 2 } 2 \theta = 5

(Multiple Choice)
4.9/5
(38)

Solve the equation for solutions in the interval [0°, 360°). Round to the nearest degree. - cos2θ=32\cos 2 \theta = \frac { \sqrt { 3 } } { 2 }

(Multiple Choice)
4.7/5
(41)
Showing 141 - 160 of 179
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)