Exam 10: First-Order Differential Equations

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Use Euler's method with the specified step size to estimate the value of the solution at the given point xx . Find the value of the exact solution at xx ^ { * } . - y=3y2/2x,y(1)=1,dx=0.5,x=5y ^ { \prime } = 3 y ^ { 2 } / \sqrt { 2 x } , y ( 1 ) = - 1 , d x = 0.5 , x ^ { * } = 5

(Multiple Choice)
4.9/5
(42)

Solve the differential equation. - y+ytanx=cosx,π/2<x<π/2y ^ { \prime } + y \tan x = \cos x , - \pi / 2 < x < \pi / 2

(Multiple Choice)
4.9/5
(41)

Use Euler's method to calculate the first three approximations to the given initial value problem for the specified increment size. Round your results to four decimal places. -y = 2xy - 2y, y(2) = 3, dx = 0.2

(Multiple Choice)
4.8/5
(38)

Match the differential equation with the appropriate slope field. - y=xy\mathrm { y } ^ { \prime } = \mathrm { x } - \mathrm { y }

(Multiple Choice)
4.8/5
(31)

Solve the initial value problem. - (x+3)dydx2(x2+3x)y=ex2x+3;x>3,y(0)=0( x + 3 ) \frac { d y } { d x } - 2 \left( x ^ { 2 } + 3 x \right) y = \frac { e ^ { x ^ { 2 } } } { x + 3 } ; x > - 3 , y ( 0 ) = 0

(Multiple Choice)
4.7/5
(36)

Solve. -A 57-kg skateboarder on a 2-kg board starts coasting on level ground at 5 m/sec. Let k = 3.2 kg/sec. How long will it take the skater's speed to drop to 3 m/sec?

(Multiple Choice)
4.8/5
(37)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Use Euler's method with the specified step size to estimate the value of the solution at the given point xx . Find the value of the exact solution at xx ^ { * } . - y=ye3x,y(0)=2,dx=1/3,x=2y ^ { \prime } = y - e ^ { - 3 x } , y ( 0 ) = 2 , d x = 1 / 3 , x ^ { * } = 2

(Multiple Choice)
4.9/5
(34)

Solve the differential equation. - ye5x+5ye5x=4xy ^ { \prime } e ^ { 5 x } + 5 y e ^ { 5 x } = 4 x

(Multiple Choice)
4.8/5
(40)

Find the orthogonal trajectories of the family of curves. Sketch several members of each family. - kx2+y2=1k x ^ { 2 } + y ^ { 2 } = 1

(Essay)
5.0/5
(32)

Solve the initial value problem. - θdydθ+y=cosθ;θ>0,y(π)=1\theta \frac { \mathrm { dy } } { \mathrm { d } \theta } + \mathrm { y } = \cos \theta ; \theta > 0 , \mathrm { y } ( \pi ) = 1

(Multiple Choice)
4.8/5
(36)
Showing 81 - 90 of 90
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)