Exam 10: First-Order Differential Equations

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Solve the problem. -The system of equations dxdt=(4+5y)x\frac { \mathrm { dx } } { \mathrm { dt } } = ( - 4 + 5 \mathrm { y } ) \mathrm { x } and dydt=(4+x)y\frac { \mathrm { dy } } { \mathrm { dt } } = ( - 4 + \mathrm { x } ) \mathrm { y } describes the growth rates of two symbiotic (dependent) species of animals (such as the rhinoceros and a type of bird which eats insects from its back). Find the equilibrium points.

(Multiple Choice)
4.8/5
(31)

Solve the problem. -A tank contains 100 gal of fresh water. A solution containing 2 lb/gal of soluble lawn fertilizer runs into the tank at the rate of 1 gal/min, and the mixture is pumped out of the tank at the rate of 2 gal/min. Find the Maximum amount of fertilizer in the tank and the time required to reach the maximum.

(Multiple Choice)
4.9/5
(34)

Solve the differential equation. - xyy=y2- x y ^ { \prime } - y = y ^ { - 2 }

(Multiple Choice)
4.8/5
(37)

Use Euler's method to calculate the first three approximations to the given initial value problem for the specified increment size. Round your results to four decimal places. - y=yex1,y(1)=2,dx=0.5y ^ { \prime } = y - e ^ { x } - 1 , y ( 1 ) = 2 , d x = 0.5

(Multiple Choice)
4.8/5
(39)

Sketch several solution curves. - y=y2yy ^ { \prime } = y - 2 \sqrt { y }

(Essay)
4.8/5
(39)

Sketch several solution curves. - dydx=y33y\frac { d y } { d x } = y ^ { 3 } - 3 y

(Essay)
4.9/5
(43)

Identify equilibrium values and determine which are stable and which are unstable. - dydx=(y+5)(y+4)\frac { \mathrm { dy } } { \mathrm { dx } } = ( \mathrm { y } + 5 ) ( \mathrm { y } + 4 )

(Multiple Choice)
4.9/5
(33)

Solve the differential equation. - xy+4y=cosxx3,x>0x y ^ { \prime } + 4 y = \frac { \cos x } { x ^ { 3 } } , x > 0

(Multiple Choice)
4.8/5
(35)

Solve the problem. -A tank initially contains 120 gal of brine in which 40 lb of salt are dissolved. A brine containing 2 lb/gal of salt runs into the tank at the rate of 9 gal/min. The mixture is kept uniform by stirring and flows out of the tank at The rate of 6 gal/min. Write, in standard form, the differential equation that models the mixing process.

(Multiple Choice)
4.8/5
(21)

Solve. Round your results to four decimal places. -Use the Euler method with dx=0.2\mathrm { dx } = 0.2 to estimate y(3)\mathrm { y } ( 3 ) if y=y\mathrm { y } ^ { \prime } = - \mathrm { y } and y(2)=2\mathrm { y } ( 2 ) = 2 . What is the exact value of y(3)\mathrm { y } ( 3 ) ?

(Multiple Choice)
4.8/5
(37)

Obtain a slope field and add to its graphs of the solution curves passing through the given points. - y=xyx2+2 with (0,1)y ^ { \prime } = \frac { x y } { x ^ { 2 } + 2 } \text { with } ( 0 , - 1 )

(Essay)
4.8/5
(32)

Sketch several solution curves. - y=y4y3y ^ { \prime } = y ^ { 4 } - y ^ { 3 }

(Essay)
4.7/5
(28)

Solve. Round your results to four decimal places. -Use the Euler method with dx=0.5\mathrm { dx } = 0.5 to estimate y(5)\mathrm { y } ( 5 ) if y=y2/2x\mathrm { y } ^ { \prime } = \mathrm { y } ^ { 2 } / \sqrt { 2 \mathrm { x } } and y(4)=3\mathrm { y } ( 4 ) = - 3 . What is the exact value of y(\mathrm { y } ( 5)?

(Multiple Choice)
4.8/5
(26)

Solve the differential equation. - y+y=y2y ^ { \prime } + y = y ^ { 2 }

(Multiple Choice)
4.7/5
(34)

Solve the initial value problem. - 2dydx4xy=8x;y(0)=232 \frac { d y } { d x } - 4 x y = 8 x ; y ( 0 ) = 23

(Multiple Choice)
5.0/5
(36)

Solve. -A local pond can only hold up to 39 geese. Six geese are introduced into the pond. Assume that the rate of grow of the population is dPdt=(0.0013)(39P)P\frac { \mathrm { dP } } { \mathrm { dt } } = ( 0.0013 ) ( 39 - \mathrm { P } ) \mathrm { P } where tt is time in weeks. Find a formula for the goose population in terms of t\mathrm { t } .

(Multiple Choice)
4.8/5
(28)

Solve the differential equation. - xdydx+2y=41x,x>0x \frac { d y } { d x } + 2 y = 4 - \frac { 1 } { x } , x > 0

(Multiple Choice)
4.9/5
(34)

Solve the differential equation. - dydxyx=(lnx)5\frac { d y } { d x } - \frac { y } { x } = ( \ln x ) ^ { 5 }

(Multiple Choice)
4.9/5
(25)

Solve the differential equation. - xdydx=y+(x21)2x \frac { d y } { d x } = y + \left( x ^ { 2 } - 1 \right) ^ { 2 }

(Multiple Choice)
4.8/5
(29)

Solve the initial value problem. - dydt+7y=3;y(0)=1\frac { d y } { d t } + 7 y = 3 ; y ( 0 ) = 1

(Multiple Choice)
4.8/5
(27)
Showing 21 - 40 of 90
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)