Exam 2: Functions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Solve the problem. -  Let f(x)=x6 and g(x)=x2. Graph f and g together with f og and g f. \text { Let } f ( x ) = x - 6 \text { and } g ( x ) = x ^ { 2 } \text {. Graph } f \text { and } g \text { together with } f \text { og and } g \circ \text { f. }  Solve the problem. - \text { Let } f ( x ) = x - 6 \text { and } g ( x ) = x ^ { 2 } \text {. Graph } f \text { and } g \text { together with } f \text { og and } g \circ \text { f. }

(Essay)
4.9/5
(40)

Find the domain and range for the indicated function. - f(x)=x+5,g(x)=x5f ( x ) = \sqrt { x + 5 , } \quad g ( x ) = \sqrt { x - 5 } fg\mathrm { f } - \mathrm { g }

(Multiple Choice)
4.7/5
(34)

Solve the problem. -Let f(x)=x2f ( x ) = \sqrt { x - 2 } . Find a function y=g(x)y = g ( x ) so that (fg)(x)=x22( f \circ g ) ( x ) = \sqrt { x ^ { 2 } - 2 } .

(Multiple Choice)
4.9/5
(42)

Solve the problem. -The accompanying figure shows the graph of y=x2y = - x ^ { 2 } shifted to a new position. Write the equation for the new graph.  Solve the problem. -The accompanying figure shows the graph of  y = - x ^ { 2 }  shifted to a new position. Write the equation for the new graph.

(Multiple Choice)
4.9/5
(44)

Simplify the expression. - ln(e8x)\ln \left( e ^ { 8 x } \right)

(Multiple Choice)
4.9/5
(41)

Solve the problem. -If f(x)=3x+2f ( x ) = - 3 x + 2 and g(x)=2x+9g ( x ) = 2 x + 9 , find g(f(x))g ( f ( x ) ) .

(Multiple Choice)
4.9/5
(45)

Express the given quantity in terms of sin x or cos x. - sin(7π2x)\sin \left( \frac { 7 \pi } { 2 } - x \right)

(Multiple Choice)
4.9/5
(31)

Find the domain and range of the inverse of the given function. - f(x)=14x6f ( x ) = \frac { 1 } { 4 } x - 6

(Multiple Choice)
4.7/5
(37)

Find the exact function value. - arccos(0)\arccos ( 0 )

(Multiple Choice)
4.9/5
(36)

Determine from its graph if the function is one-to-one. - f(x)={x3,x<15,x1f ( x ) = \left\{ \begin{array} { l l } - x - 3 , & x < 1 \\5 , & x \geq 1\end{array} \right.

(True/False)
4.8/5
(39)

Find a formula for the function graphed. -Find a formula for the function graphed. -

(Multiple Choice)
4.8/5
(30)

Express the following logarithm as specified. - ln4.5\ln 4.5 in terms of ln2\ln 2 and ln3\ln 3

(Multiple Choice)
4.9/5
(49)

Provide an appropriate response. Consider the function y Can x be greater than 1? - y=11xy = \sqrt { 1 - \frac { 1 } { x } }

(True/False)
4.7/5
(40)

Graph the function. -  Graph the upper half of the circle defined by the equation x2+y210x8y+25=0\text { Graph the upper half of the circle defined by the equation } x ^ { 2 } + y ^ { 2 } - 10 x - 8 y + 25 = 0 \text {. }  Graph the function. - \text { Graph the upper half of the circle defined by the equation } x ^ { 2 } + y ^ { 2 } - 10 x - 8 y + 25 = 0 \text {. }

(Multiple Choice)
4.7/5
(37)

Use a graphing calculator or computer to determine which of the given viewing windows displays the most appropriate graph of the specified function. - f(x)=x2+110cos70xf ( x ) = x ^ { 2 } + \frac { 1 } { 10 } \cos 70 x

(Multiple Choice)
4.9/5
(46)

Solve the problem. -The kinetic energy K of a mass is proportional to the square of its velocity v. If K = 4320 joules when v = 12 m/sec, what is K when v = 8 m/sec?

(Multiple Choice)
4.7/5
(26)

Assume that f is an even function, g is an odd function, and both f and g are defined on the entire real line. State whether the combination of functions (where defined) is even or odd. - ggg \circ g

(Multiple Choice)
4.8/5
(34)

Solve the problem. -Let f(x)=xx4f ( x ) = \frac { x } { x - 4 } . Find a function y=g(x)y = g ( x ) so that (fg)(x)=x( f \circ g ) ( x ) = x .

(Multiple Choice)
4.7/5
(32)

Determine if the function is even, odd, or neither. - g(x)=6xx23g ( x ) = \frac { - 6 x } { x ^ { 2 } - 3 }

(Multiple Choice)
4.9/5
(38)

Find a formula for the function graphed. -Find a formula for the function graphed. -

(Multiple Choice)
4.9/5
(30)
Showing 181 - 200 of 413
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)