Exam 5: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Decide whether a triangle can be formed with the given side lengths. If so, use Heron's formula to find the area of the triangle. -a = 35 b = 20.2 C = 12.8

(Multiple Choice)
4.8/5
(28)

Prove the identity. - cot2x+csc2x=2csc2x1\cot ^ { 2 } x + \csc ^ { 2 } x = 2 \csc ^ { 2 } x - 1

(Essay)
4.9/5
(35)

Rewrite with only sin x and cos x. - sin3xcosx\sin 3 x - \cos x

(Multiple Choice)
4.8/5
(41)

Match the graph with the correct equation. -Match the graph with the correct equation. -

(Multiple Choice)
4.9/5
(41)

Decide whether a triangle can be formed with the given side lengths. If so, use Heron's formula to find the area of the triangle. -a = 62 b = 70 C = 83.6

(Multiple Choice)
4.8/5
(35)

Prove the identity. - cos(x+(yπ2))=sin(x+y)\cos \left( x + \left( y - \frac { \pi } { 2 } \right) \right) = \sin ( x + y )

(Essay)
4.9/5
(34)

Prove the identity. - sin(π4+x)=22(cosx+sinx)\sin \left( \frac { \pi } { 4 } + x \right) = 2 \sqrt { 2 } ( \cos x + \sin x )

(Essay)
4.8/5
(42)

Explain the condition that must exist to determine that there may be two triangles satisfying given values of a, bb , and AA , once the value of sinA\sin \mathrm { A } is found. What kind of triangle will this be?

(Essay)
5.0/5
(29)

Find all solutions to the equation in the interval [0, 2). - sin2xsin4x=0\sin 2 x - \sin 4 x = 0

(Multiple Choice)
4.8/5
(36)

Prove the identity. - sinx1cosx+sinx1+cosx=2cscx\frac { \sin x } { 1 - \cos x } + \frac { \sin x } { 1 + \cos x } = 2 \csc x

(Essay)
4.8/5
(35)

 What happens if C=90 when the law of cosines is applied in the form c2=a2+b22abcosC ? \text { What happens if } C = 90 ^ { \circ } \text { when the law of cosines is applied in the form } c ^ { 2 } = a ^ { 2 } + b ^ { 2 } - 2 a b \cos C \text { ? }

(Essay)
4.8/5
(34)

Solve the triangle. - a=3, b=11,c=6\mathrm { a } = 3 , \mathrm {~b} = 11 , \mathrm { c } = 6

(Multiple Choice)
4.8/5
(32)

Find an exact value. - tan7π12\tan \frac { - 7 \pi } { 12 }

(Multiple Choice)
4.9/5
(43)

Find an exact value. - cosπ12\cos \frac { \pi } { 12 }

(Multiple Choice)
4.7/5
(36)

Simplify the expression to either 1 or -1. - tan(π2x)tanx\tan \left( \frac { \pi } { 2 } - x \right) \tan x

(Multiple Choice)
4.8/5
(27)

Solve the triangle. - A=39,B=32,b=11\mathrm { A } = 39 ^ { \circ } , \mathrm { B } = 32 ^ { \circ } , \mathrm { b } = 11

(Multiple Choice)
4.9/5
(34)

Use the fundamental identities to find the value of the trigonometric function. -Find cosθ\cos \theta if sinθ=1213\sin \theta = - \frac { 12 } { 13 } and tanθ>0\tan \theta > 0 .

(Multiple Choice)
4.9/5
(39)

Find all solutions to the equation in the interval [0, 2). - cosxcotx=0\cos x - \cot x = 0

(Multiple Choice)
4.9/5
(43)

Find the area. Round your answer to the nearest hundredth if necessary. -Find the area of the triangle with the following measurements: A=55,b=10 m,c=22 m\mathrm { A } = 55 ^ { \circ } , \mathrm { b } = 10 \mathrm {~m} , \mathrm { c } = 22 \mathrm {~m}

(Multiple Choice)
5.0/5
(43)

Provide an appropriate response. -A student claims that the equation tanθ+1=secθ\tan \theta + 1 = \sec \theta is an identity, since by letting θ=0\theta = 0 ^ { \circ } we get 0+1=10 + 1 = 1 , a true statement. Comment on this student's reasoning.

(Short Answer)
5.0/5
(40)
Showing 181 - 200 of 313
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)