Exam 5: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Write each expression in factored form as an algebraic expression of a single trigonometric function. - cosxsin2x1\cos x - \sin ^ { 2 } x - 1

(Multiple Choice)
4.9/5
(39)

Prove the identity. - 1sintcost=cost1+sint\frac { 1 - \sin t } { \cos t } = \frac { \cos t } { 1 + \sin t }

(Essay)
4.9/5
(31)

Provide an appropriate response. -Discuss the methods used to verify an identity and why you would choose a particular method.

(Essay)
4.8/5
(37)

State whether the given measurements determine zero, one, or two triangles. - A=43,a=4, b=16\mathrm { A } = 43 ^ { \circ } , \mathrm { a } = 4 , \mathrm {~b} = 16

(Multiple Choice)
4.8/5
(28)

Without using the law of cosines, explain why it is impossible to construct a triangle with lengths 8.6 cm,11.88.6 \mathrm {~cm} , 11.8 cm\mathrm { cm } , and 21.9 cm21.9 \mathrm {~cm} .

(Essay)
4.9/5
(29)

Solve. -Points A\mathrm { A } and B\mathrm { B } are on opposite sides of a lake. A point C\mathrm { C } is 89.289.2 meters from A\mathrm { A } . The measure of angle BAC is 754075 ^ { \circ } 40 ^ { \prime } , and the measure of angle ACB\mathrm { ACB } is determined to be 393039 ^ { \circ } 30 ^ { \prime } . Find the distance between points A\mathrm { A } and B\mathrm { B } (to the nearest meter).

(Multiple Choice)
4.8/5
(31)

Find the area. Round your answer to the nearest hundredth if necessary. -Find the area of the triangle with the following measurements: B=63,a=10 cm,c=22 cm\mathrm { B } = 63 ^ { \circ } , \mathrm { a } = 10 \mathrm {~cm} , \mathrm { c } = 22 \mathrm {~cm}

(Multiple Choice)
4.7/5
(35)

Solve the triangle. -Solve the triangle. -

(Multiple Choice)
4.9/5
(30)

Solve the triangle. - a=6,b=11,c=8a = 6 , b = 11 , c = 8

(Multiple Choice)
4.8/5
(37)

Find the area. Round your answer to the nearest hundredth if necessary. -A regular polygon with 8 sides is circumscribed about a circle of radius 9 inches. Find the area of the polygon.

(Multiple Choice)
4.7/5
(34)

Complete the identity. -The expression secx+cscxtanx+cotx\frac { \sec x + \csc x } { \tan x + \cot x } is to be the left hand side of an equation that is an identity. Which one of the following four expressions can be u the right hand side of the equation to complete the identity?

(Multiple Choice)
4.9/5
(45)

Simplify the expression to either 1 or -1. - cotxtanx\cot x \tan x

(Multiple Choice)
4.8/5
(41)

Simplify the expression to either 1 or -1. -csc (-x) sin (-x)

(Multiple Choice)
4.7/5
(26)

Find the exact value by using a half-angle identity. - cos5π12\cos \frac { 5 \pi } { 12 }

(Multiple Choice)
4.8/5
(40)

Prove the identity. - cos3x=cos3x3sin2xcosx\cos 3 x = \cos ^ { 3 } x - 3 \sin ^ { 2 } x \cos x

(Essay)
4.9/5
(38)

Decide whether a triangle can be formed with the given side lengths. If so, use Heron's formula to find the area of the triangle. -a = 240 b = 126 C = 327

(Multiple Choice)
4.8/5
(35)

Determine if the following is an identity. - cosxcscxtanx=1\cos x \csc x \tan x = 1

(Multiple Choice)
4.8/5
(31)

Prove the identity. - cot2xcscx1=1+sinxsinx\frac { \cot ^ { 2 } x } { \csc x - 1 } = \frac { 1 + \sin x } { \sin x }

(Essay)
4.8/5
(38)

Use the fundamental identities to find the value of the trigonometric function. -Given that tan(θπ2)=0.4\tan \left( \theta - \frac { \pi } { 2 } \right) = - 0.4 , find cotθ\cot \theta .

(Multiple Choice)
4.8/5
(30)

Write each expression in factored form as an algebraic expression of a single trigonometric function. - sec4x+sec2xtan2x2tan4x\sec ^ { 4 } x + \sec ^ { 2 } x \tan ^ { 2 } x - 2 \tan ^ { 4 } x

(Multiple Choice)
4.8/5
(47)
Showing 81 - 100 of 313
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)