Exam 5: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Simplify the expression. - 1cscxcotx+1cscx+cotx\frac { 1 } { \csc x - \cot x } + \frac { 1 } { \csc x + \cot x }

(Multiple Choice)
4.9/5
(39)

Find all solutions to the equation. - 5sin2x10sinx+8=35 \sin ^ { 2 } x - 10 \sin x + 8 = 3

(Multiple Choice)
4.9/5
(36)

Write each expression in factored form as an algebraic expression of a single trigonometric function. - 4cot2x4tanx+cosxsecx4 \cot ^ { 2 } x - \frac { 4 } { \tan x } + \cos x \sec x

(Multiple Choice)
4.9/5
(44)

Prove the identity. - cotx1+cscx=cscx1cotx\frac { \cot x } { 1 + \csc x } = \frac { \csc x - 1 } { \cot x }

(Essay)
4.8/5
(39)

Determine if the following is an identity. - (sinx+cosx)2=1( \sin x + \cos x ) ^ { 2 } = 1

(Multiple Choice)
4.8/5
(24)

Solve the triangle. -Solve the triangle. -

(Multiple Choice)
4.9/5
(32)

Use the fundamental identities to find the value of the trigonometric function. -Given that cos(θπ2)=45\cos \left( \theta - \frac { \pi } { 2 } \right) = - \frac { 4 } { 5 } , find sin(θ)\sin ( - \theta ) .

(Multiple Choice)
4.9/5
(28)

Solve the triangle. - A=52,B=63,a=8\mathrm { A } = 52 ^ { \circ } , \mathrm { B } = 63 ^ { \circ } , \mathrm { a } = 8

(Multiple Choice)
4.7/5
(31)

Prove the identity. - cot2x=(cscx1)(cscx+1)\cot ^ { 2 } x = ( \csc x - 1 ) ( \csc x + 1 )

(Essay)
4.9/5
(47)

Use basic identities to simplify the expression. - cosθcosθsin2θ\cos \theta - \cos \theta \sin ^ { 2 } \theta

(Multiple Choice)
4.9/5
(39)

Simplify the expression to either 1 or -1. - cot2xcsc2(x)\cot ^ { 2 } x - \csc ^ { 2 } ( - x )

(Multiple Choice)
4.7/5
(35)

Find an exact value. - cos7π12\cos \frac { - 7 \pi } { 12 }

(Multiple Choice)
4.7/5
(37)

Prove the identity. - tan2x=sec2xsin2xcos2x\tan ^ { 2 } x = \sec ^ { 2 } x - \sin ^ { 2 } x - \cos ^ { 2 } x

(Essay)
4.9/5
(23)

Solve the triangle. - A=19,C=105,c=6\mathrm { A } = 19 ^ { \circ } , \mathrm { C } = 105 ^ { \circ } , \mathrm { c } = 6

(Multiple Choice)
4.8/5
(36)

Prove the identity. -sin (x + y) - sin (x - y) = 2 cos x sin y

(Essay)
4.8/5
(30)

Prove the identity. -cos (x - y) - cos (x + y) = 2 sin x sin y

(Essay)
4.8/5
(45)

Prove the identity. - cosxcscxtanx=1\cos x \csc x \tan x = 1

(Essay)
5.0/5
(28)

Use the fundamental identities to find the value of the trigonometric function. -Find cotθ\cot \theta if cscθ=174\csc \theta = \frac { \sqrt { 17 } } { 4 } and tanθ>0\tan \theta > 0 .

(Multiple Choice)
4.8/5
(43)

Find sinθ\sin \theta if cotθ=4\cot \theta = - 4 and cosθ<0\cos \theta < 0 .

(Multiple Choice)
4.9/5
(41)

Given the SAS parts of a triangle, is it better to use the law of sines or the law of cosines as the first step in solving the triangle? Explain.

(Essay)
4.7/5
(31)
Showing 121 - 140 of 313
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)