Exam 5: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Match the graph with the correct equation. -Match the graph with the correct equation. -

(Multiple Choice)
4.9/5
(46)

Prove the identity. - sec4xtan4x=sec2x+tan2x\sec ^ { 4 } x - \tan ^ { 4 } x = \sec ^ { 2 } x + \tan ^ { 2 } x

(Essay)
4.8/5
(34)

Prove the identity. - 5csc2x+4cscx1cot2x=5cscx1cscx1\frac { 5 \csc ^ { 2 } x + 4 \csc x - 1 } { \cot ^ { 2 } x } = \frac { 5 \csc x - 1 } { \csc x - 1 }

(Essay)
4.7/5
(39)

Write the expression as the sine, cosine, or tangent of an angle. - cos130cos59+sin130sin59\cos 130 ^ { \circ } \cos 59 ^ { \circ } + \sin 130 ^ { \circ } \sin 59 ^ { \circ }

(Multiple Choice)
4.9/5
(30)

Prove the identity. - cosxsecx1cosxsecx+1=2cosxtan2x\frac { \cos x } { \sec x - 1 } - \frac { \cos x } { \sec x + 1 } = \frac { 2 \cos x } { \tan ^ { 2 } x }

(Essay)
4.9/5
(35)

Prove the identity. - tan6utan4u=tan25utan2u1tan25utan2u\tan 6 u \tan 4 u = \frac { \tan ^ { 2 } 5 u - \tan ^ { 2 } u } { 1 - \tan ^ { 2 } 5 u \tan ^ { 2 } u }

(Essay)
4.9/5
(30)

Find all solutions in the interval [0, 2π). - cosx=sin(x2)\cos x = \sin \left( \frac { x } { 2 } \right)

(Multiple Choice)
4.8/5
(36)

Prove the identity. - tan(π2+x)=cotx\tan \left( \frac { \pi } { 2 } + x \right) = - \cot x

(Essay)
4.7/5
(29)

Express the function as a sinusoid of the form y = a sin (bx + c). - y=4sin(6x)cos(6x)y = 4 \sin ( 6 x ) - \cos ( 6 x )

(Multiple Choice)
4.9/5
(40)

Determine if the following is an identity. - 1+cscxsecx=cosx+cotx\frac { 1 + \csc x } { \sec x } = \cos x + \cot x

(Multiple Choice)
4.8/5
(39)

Prove the identity. - cot(x+y)cot(xy)=1tan2xtan2ytan2xtan2y\cot ( x + y ) \cot ( x - y ) = \frac { 1 - \tan ^ { 2 } x \tan ^ { 2 } y } { \tan ^ { 2 } x - \tan ^ { 2 } y }

(Essay)
4.9/5
(32)

Simplify the expression. - csc2xsecxsec2x+csc2x\frac { \csc ^ { 2 } x \sec x } { \sec ^ { 2 } x + \csc ^ { 2 } x }

(Multiple Choice)
4.9/5
(37)

Simplify the expression. - 11cosx+11+cosx\frac { 1 } { 1 - \cos x } + \frac { 1 } { 1 + \cos x }

(Multiple Choice)
4.8/5
(38)

Write the expression as the sine, cosine, or tangent of an angle. - cosπ7cosxsinπ7sinx\cos \frac { \pi } { 7 } \cos x - \sin \frac { \pi } { 7 } \sin x

(Multiple Choice)
4.7/5
(41)

Use the fundamental identities to find the value of the trigonometric function. -Find cscθ\csc \theta if cotθ=35\cot \theta = - \sqrt { 35 } and cosθ<0\cos \theta < 0 .

(Multiple Choice)
4.9/5
(37)

Complete the identity. -The expression secθ+cscθtanθ+1\frac { \sec \theta + \csc \theta } { \tan \theta + 1 } is to be the left hand side of an equation that is an identity. Which one of the following four expressions can be u: the right hand side of the equation to complete the identity?

(Multiple Choice)
4.8/5
(36)

Find the exact value by using a half-angle identity. - tan75\tan 75 ^ { \circ }

(Multiple Choice)
4.8/5
(37)

Rewrite with only sin x and cos x. - cos2xsinx\cos 2 x - \sin x

(Multiple Choice)
4.8/5
(35)

Find all solutions to the equation in the interval [0, 2). - sin2x=sinx\sin 2 x = - \sin x

(Multiple Choice)
4.8/5
(44)

Prove the identity. - cos(x+π6)=32cosx12sinx\cos \left( x + \frac { \pi } { 6 } \right) = \frac { \sqrt { 3 } } { 2 } \cos x - \frac { 1 } { 2 } \sin x

(Essay)
4.9/5
(33)
Showing 141 - 160 of 313
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)