Exam 5: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Prove the identity. - sin(xπ4)=22(sinxcosx)\sin \left( x - \frac { \pi } { 4 } \right) = \frac { \sqrt { 2 } } { 2 } ( \sin x - \cos x )

(Essay)
4.8/5
(41)

Determine if the following is an identity. - sinθsecθ=cosθcscθ\sin \theta \sec \theta = \cos \theta \csc \theta

(Multiple Choice)
4.9/5
(36)

Solve. -A guy wire to a tower makes a 7575 ^ { \circ } angle with level ground. At a point 40ft40 \mathrm { ft } farther from the tower than the wire but on the same side as the base of the wire, the angle of elevation to the top of the tower is 3737 ^ { \circ } . Find the length of the wire (to the nearest foot).

(Multiple Choice)
4.7/5
(39)

Prove the identity. - sinx+cosxsinxcosx=1+2sinxcosx2sin2x1\frac { \sin x + \cos x } { \sin x - \cos x } = \frac { 1 + 2 \sin x \cos x } { 2 \sin ^ { 2 } x - 1 }

(Essay)
4.9/5
(31)

Solve the triangle. - A=48,a=33, b=26\mathrm { A } = 48 ^ { \circ } , \mathrm { a } = 33 , \mathrm {~b} = 26

(Multiple Choice)
4.8/5
(29)

Find the area. Round your answer to the nearest hundredth if necessary. -Find the area of a regular decagon (10 sides) inscribed in a circle of radius 10 inches.

(Multiple Choice)
4.9/5
(37)

Simplify the expression. - cotxsinxsin(π2x)+cosx\cot x \sin x - \sin \left( \frac { \pi } { 2 } - x \right) + \cos x

(Multiple Choice)
4.9/5
(32)

Prove the identity. - tan2u(1+cos2u)=1cos2u\tan ^ { 2 } u ( 1 + \cos 2 u ) = 1 - \cos 2 u

(Essay)
5.0/5
(38)

Simplify the expression to either 1 or -1. - sin(x)cscx\sin ( - x ) \csc x

(Multiple Choice)
4.9/5
(32)

Prove the identity. - csc3xtan2x=cscx(1+tan2x)\csc ^ { 3 } x \tan ^ { 2 } x = \csc x \left( 1 + \tan ^ { 2 } x \right)

(Essay)
4.7/5
(31)

Find an exact value. - sin17π12\sin \frac { 17 \pi } { 12 }

(Multiple Choice)
4.7/5
(29)

Prove the identity. -4 cot 4x = 2 cot 2u - 2 tan 2u

(Essay)
4.7/5
(42)

State whether the given measurements determine zero, one, or two triangles. - C=30,a=20,c=10\mathrm { C } = 30 ^ { \circ } , \mathrm { a } = 20 , \mathrm { c } = 10

(Multiple Choice)
4.9/5
(33)

Prove the identity. - cos4x+cos2x=22sin22x2sin2x\cos 4 x + \cos 2 x = 2 - 2 \sin ^ { 2 } 2 x - 2 \sin ^ { 2 } x

(Essay)
4.7/5
(44)

Match the graph with the correct equation. -Match the graph with the correct equation. -

(Multiple Choice)
4.7/5
(30)

Prove the identity. - 1+cscxsecx=cosx+cotx\frac { 1 + \csc x } { \sec x } = \cos x + \cot x

(Essay)
4.8/5
(33)

Solve the triangle. - a=12, b=20,C=95\mathrm { a } = 12 , \mathrm {~b} = 20 , \mathrm { C } = 95 ^ { \circ }

(Multiple Choice)
4.7/5
(42)

Find all solutions to the equation in the interval [0, 2). - cos4xcos2x=0\cos 4 x - \cos 2 x = 0

(Multiple Choice)
4.9/5
(35)

Match the graph with the correct equation. -Match the graph with the correct equation. -

(Multiple Choice)
4.8/5
(41)

Simplify the expression. - cos(π2x)tanxsin2x\frac { \cos \left( \frac { \pi } { 2 } - x \right) \tan x } { \sin ^ { 2 } x }

(Multiple Choice)
4.9/5
(32)
Showing 101 - 120 of 313
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)