Exam 5: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Provide an appropriate response. -  Show that csc(A+B)=cscAcscBcotB+cotA\text { Show that } \csc ( A + B ) = \frac { \csc A \csc B } { \cot B + \cot A } \text {. }

(Short Answer)
4.8/5
(37)

Find all solutions to the equation in the interval [0, 2). - sin2x+cos3x=0\sin 2 x + \cos 3 x = 0

(Multiple Choice)
4.7/5
(38)

State whether the given measurements determine zero, one, or two triangles. - B=87,b=27,c=28B = 87 ^ { \circ } , b = 27 , c = 28

(Multiple Choice)
4.8/5
(34)

Find an exact value. - sin105\sin 105 ^ { \circ }

(Multiple Choice)
4.9/5
(33)

The given measurements may or may not determine a triangle. If not, then state that no triangle is formed. If a triangle is formed, then use the Law of Sines to solve the triangle, if it is possible, or state that the Law of Sines cannot be used. -The given measurements may or may not determine a triangle. If not, then state that no triangle is formed. If a triangle is formed, then use the Law of Sines to solve the triangle, if it is possible, or state that the Law of Sines cannot be used. -

(Multiple Choice)
4.9/5
(33)

Solve the problem. -A building has a ramp to its front doors to accommodate the handicapped. If the distance from the building to the end of the ramp is 13 feet and the height from the ground to the front doors is 4 feet, how long is the ramp? (Round to the nearest tenth.)

(Multiple Choice)
4.9/5
(40)

Find an exact value. - cos165\cos 165 ^ { \circ }

(Multiple Choice)
4.8/5
(32)

Write the expression as the sine, cosine, or tangent of an angle. - cosπ7cosπ11+sinπ7sinπ11\cos \frac { \pi } { 7 } \cos \frac { \pi } { 11 } + \sin \frac { \pi } { 7 } \sin \frac { \pi } { 11 }

(Multiple Choice)
4.8/5
(37)

Write each expression in factored form as an algebraic expression of a single trigonometric function. - csc2x1\csc ^ { 2 } x - 1

(Multiple Choice)
5.0/5
(39)

Prove the identity. - cscx1cscx+1=cot2xcsc2x+2cscx+1\frac { \csc x - 1 } { \csc x + 1 } = \frac { \cot ^ { 2 } x } { \csc ^ { 2 } x + 2 \csc x + 1 }

(Essay)
4.8/5
(40)

Find all solutions in the interval [0, 2π] - sin2x+sinx=0\sin ^ { 2 } x + \sin x = 0

(Multiple Choice)
4.9/5
(41)

Prove the identity. - cos4x=12sin22x\cos 4 x = 1 - 2 \sin ^ { 2 } 2 x

(Essay)
4.9/5
(35)

Prove the identity. - 4csc2x=2csc2xtanx4 \csc 2 x = 2 \csc ^ { 2 } x \tan x

(Essay)
4.9/5
(33)

Find the area. Round your answer to the nearest hundredth if necessary. -Find the area of the triangle with the following measurements: A=50,b=25ft,c=15ft\mathrm { A } = 50 ^ { \circ } , \mathrm { b } = 25 \mathrm { ft } , \mathrm { c } = 15 \mathrm { ft }

(Multiple Choice)
4.8/5
(40)

Two triangles can be formed using the given measurements. Solve both triangles. - B=35,b=23,c=24\mathrm { B } = 35 ^ { \circ } , \mathrm { b } = 23 , \mathrm { c } = 24

(Multiple Choice)
4.9/5
(33)

Find all solutions to the equation. - cosx=sinx\cos x = \sin x

(Multiple Choice)
4.9/5
(32)

Find all solutions in the interval [0, 2π). - cot(x2)=1cosx1+cosx\cot \left( \frac { x } { 2 } \right) = \frac { 1 - \cos x } { 1 + \cos x }

(Multiple Choice)
4.9/5
(40)

Simplify the expression. - cotxsec2x+cotxcsc2x\frac { \cot x } { \sec ^ { 2 } x } + \frac { \cot x } { \csc ^ { 2 } x }

(Multiple Choice)
4.8/5
(29)

Given the SSS parts of a triangle, is it better to use the law of sines or the law of cosines as the first step in solving the triangle? Explain.

(Essay)
4.9/5
(44)

Find all solutions to the equation. - sinx=32\sin x = \frac { \sqrt { 3 } } { 2 } \quad (Express your answer in radians, in exact form.)

(Multiple Choice)
4.8/5
(34)
Showing 241 - 260 of 313
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)