Exam 5: Antiderivatives and Indefinite Integration

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the general solution of the differential equation below and check the result by differentiation. dTdx=28x6\frac { d T } { d x } = 28 x ^ { 6 }

(Multiple Choice)
4.8/5
(36)

Find the indefinite integral. e2xdx\int e ^ { - 2 x } d x

(Multiple Choice)
5.0/5
(42)

 Find the indefinite integral (1+4z)5dz\text { Find the indefinite integral } \int ( 1 + 4 z ) ^ { 5 } d z \text {. }

(Multiple Choice)
4.9/5
(45)

Evaluate the integral. 56(12u32u)du\int _ { 5 } ^ { 6 } \left( - 12 u ^ { 3 } - 2 u \right) d u given, x3dx=6714\int x ^ { 3 } d x = \frac { 671 } { 4 } x2dx=913\int x ^ { 2 } d x = \frac { 91 } { 3 } xdx=112\int x d x = \frac { 11 } { 2 } 56dx=1\int _ { 5 } ^ { 6 } d x = 1

(Multiple Choice)
4.9/5
(34)

Find the smallest n such that the error estimate from the error formula in the approximation of the definite integral 02x+7dx\int _ { 0 } ^ { 2 } \sqrt { x + 7 } d x is less than 0.000010.00001 using the Trapezoidal Rule.

(Multiple Choice)
4.7/5
(39)

Use the properties of summation and Theorem 5.2 to evaluate the sum. i=122(2i2+3)\sum _ { i = 1 } ^ { 22 } \left( 2 i ^ { 2 } + 3 \right)

(Multiple Choice)
4.8/5
(33)

 Find the solution of the differential equation dydx=25x which passes through the \text { Find the solution of the differential equation } \frac { d y } { d x } = \frac { 2 } { 5 - x } \text { which passes through the } point (4,0)( 4,0 ) .

(Multiple Choice)
4.8/5
(34)

Find table lists several measurements gathered in an experiment to approximate an unknown continuous function y=f(x)y = f ( x ) . Approximate the integral 02f(x)dx\int _ { 0 } ^ { 2 } f ( x ) d x using the Simpson's Rule. Round your answer to three decimal places. x 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 y 4.72 4.77 4.82 6.17 6.52 7.17 7.32 7.97 8.02

(Multiple Choice)
4.8/5
(43)

Evaluate the following definite integral by the limit definition. 51015u2du\int _ { 5 } ^ { 10 } 15 u ^ { 2 } d u

(Multiple Choice)
4.8/5
(34)

Evaluate the definite integral of a function 01u32du. Use a graphing utility to verify \int _ { 0 } ^ { 1 } u ^ { \frac { 3 } { 2 } } d u \text {. Use a graphing utility to verify } your results.

(Multiple Choice)
4.9/5
(35)

Suppose that the probability that a person will remember between 100a% and 100b%100 a \% \text { and } 100 b \% of material learned in an experiment is Pa,b=ab154x1xdxP _ { a , b } = \int _ { a } ^ { b } \frac { 15 } { 4 } x \sqrt { 1 - x } d x where xx represents the proportion remembered. Determine from the figure below, the probability that a randomly chosen individual will recall between 50%50 \% and 75%75 \% of the material? Express your answer as a percent rounded to three decimal places.  Suppose that the probability that a person will remember between  100 a \% \text { and } 100 b \%  of material learned in an experiment is  P _ { a , b } = \int _ { a } ^ { b } \frac { 15 } { 4 } x \sqrt { 1 - x } d x  where  x  represents the proportion remembered. Determine from the figure below, the probability that a randomly chosen individual will recall between  50 \%  and  75 \%  of the material? Express your answer as a percent rounded to three decimal places.

(Multiple Choice)
4.9/5
(36)

Apply the Trapezoidal Rule and Simpson's Rule to approximate the value of the definite integral using 8 subintervals. Round your answer to six decimal places and compare the result with the exact value of the definite integral. 454+t5dt\int _ { 4 } ^ { 5 } \sqrt { 4 + t ^ { 5 } } d t

(Multiple Choice)
4.7/5
(34)

Evaluate the following definite integral by the limit definition. 215s3ds\int _ { - 2 } ^ { 1 } 5 s ^ { 3 } d s

(Multiple Choice)
4.7/5
(35)

 The rate of disbursement dQ/dt of a 2 million dollar federal grant is proportional to \text { The rate of disbursement } d Q / d t \text { of a } 2 \text { million dollar federal grant is proportional to } the square of 100t100 - t . Time tt is measured in days (0t100)( 0 \leq t \leq 100 ) and QQ is the amount that remains to be disbursed. Find the amount that remains to be disbursed after 30 days. Assume that all the money will be disbursed in 100 days.

(Multiple Choice)
5.0/5
(47)

Find the general solution of the differential equation below and check the result by differentiation. dYdu=94u54\frac { d Y } { d u } = \frac { 9 } { 4 } u ^ { \frac { 5 } { 4 } }

(Multiple Choice)
4.7/5
(41)

 Find the average value of f(x)=5(x2+5)x2 on the interval [1,3]\text { Find the average value of } f ( x ) = \frac { 5 \left( x ^ { 2 } + 5 \right) } { x ^ { 2 } } \text { on the interval } [ 1,3 ] \text {. }

(Multiple Choice)
4.7/5
(37)

 Use Simpson’s Rule to approximate the value of the definite integral 082x4dx with \text { Use Simpson's Rule to approximate the value of the definite integral } \int _ { 0 } ^ { 8 } 2 \sqrt [ 4 ] { x } d x \text { with } n=8n = 8 . Round your answer to four decimal places

(Multiple Choice)
4.9/5
(42)

Write the limit limΔ0i=1n(6ci2)Δxi, as a definite integral on the interval [8,10]\lim _ { | \Delta | \rightarrow 0 } \sum _ { i = 1 } ^ { n } \left( \frac { 6 } { c _ { i } ^ { 2 } } \right) \Delta x _ { i } , \text { as a definite integral on the interval } [ 8,10 ] where ci is any point in the ithi ^ { t h } subinterval.

(Multiple Choice)
4.9/5
(38)

Find the indefinite integral. x4x2+9dx\int \frac { x } { - 4 x ^ { 2 } + 9 } d x

(Multiple Choice)
4.9/5
(38)

Find the indefinite integral (9t2+14t2)dt\int \left( - 9 t ^ { 2 } + 14 t - 2 \right) d t

(Multiple Choice)
4.7/5
(44)
Showing 101 - 120 of 167
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)