Exam 12: Vector-Valued Functions

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Because of a storm, ground controllers instruct the pilot of a plane flying at an altitude of 1.6 miles to make a 90 90^{\circ} turn and climb to an altitude of 1.8 miles. The model for the path of the plane during this maneuver is r(t)=4cos4πt,4sin4πt,1.6+1.6t,0t18 where t is the \mathbf { r } ( t ) = \langle 4 \cos 4 \pi t , 4 \sin 4 \pi t , 1.6 + 1.6 t \rangle , 0 \leq t \leq \frac { 1 } { 8 } \text { where } t \text { is the } time in hours and is the distance in miles. Determine the speed of the plane. Round your answer to The nearest integer.

Free
(Multiple Choice)
4.8/5
(48)
Correct Answer:
Verified

A

A particle moves in the yz-plane along the curve represented by the vector-valued function r(t)=(4cost)j+(9sint)k\mathbf { r } ( t ) = ( 4 \cos t ) \mathbf { j } + ( 9 \sin t ) \mathbf { k } . Find the minimum value of rt\left\| \mathbf { r } ^ {t } \right\|

Free
(Multiple Choice)
4.7/5
(36)
Correct Answer:
Verified

B

Evaluate the limit given below. limt2(e3ti+2t2t2+6tj+2tk)\lim _ { t \rightarrow 2 } \left( e ^ { - 3 t } i + \frac { 2 t ^ { 2 } } { t ^ { 2 } + 6 t } j + \frac { 2 } { t } k \right)

Free
(Multiple Choice)
4.9/5
(40)
Correct Answer:
Verified

C

Find the unit tangent vector to the curve given below at the specified point. r(2)=5costi+4sintj,t=2π3\mathbf { r } ( 2 ) = 5 \cos t \mathbf { i } + 4 \sin t \mathbf { j } , t = \frac { 2 \pi } { 3 }

(Multiple Choice)
4.7/5
(28)

Evaluate the definite integral below. 02(6t2i+10t4j+15t4k)dt\int _ { 0 } ^ { 2 } \left( - 6 t ^ { 2 } \mathbf { i } + 10 t ^ { 4 } \mathbf { j } + 15 t ^ { 4 } \mathbf { k } \right) d t

(Multiple Choice)
4.8/5
(32)

Find the curvature K of the curve given below. r(t)=ti+2t2j+2tk\mathbf { r } ( t ) = t \mathbf { i } + 2 t ^ { 2 } \mathbf { j } + 2 t \mathbf { k }

(Multiple Choice)
4.7/5
(26)

Find the principle unit normal vector to the curve given below at the specified point. r(t)=ti+4tj,t=3\mathbf { r } ( t ) = t \mathbf { i } + \frac { 4 } { t } \mathbf { j } , \quad t = 3

(Multiple Choice)
4.9/5
(41)

Dt[2r(t)5u(t)] given the following D _ { t } [ 2 \mathbf { r } ( t ) - 5 \mathbf { u } ( t ) ] \text { given the following } Use the properties of the derivative to find vector-valued functions. (t)=2t+6+2 (t)=2+4+3

(Multiple Choice)
4.9/5
(30)

Find the curvature of the plane curve y=3x2+4 at x=2y = 3 x ^ { 2 } + 4 \text { at } x = - 2 . Round your answer to three decimal places.

(Multiple Choice)
4.9/5
(46)

Use the properties of the derivative to find Dt(r(t)×u(t)) given the following D _ { t } ( \mathbf { r } ( t ) \times \mathbf { u } ( t ) ) \text { given the following } vector-valued functions. (t)=44t+44t (t)=+44t+44t

(Multiple Choice)
4.9/5
(27)

 The position vector r(t)=8ti++4tj+5tk describes the path of an object moving in \text { The position vector } \mathbf { r } ( t ) = 8 t \mathbf { i } + + 4 t \mathbf { j } + 5 t \mathbf { k } \text { describes the path of an object moving in } space. Find the speed s(t)s ( t ) of the object.

(Multiple Choice)
4.9/5
(41)

The quarterback of a football team releases a pass at a height of 8 feet above the playing field, and the football is caught by a receiver 38 yards directly downfield at a height of 4 feet. The pass is released at an angle of 45 with the horizontal. Find the speed of the football when it is 45 ^ { \circ } \text { with the horizontal. Find the speed of the football when it is } released. Round your answer to three decimal places.

(Multiple Choice)
4.7/5
(42)

Find the domain of the vector-valued function given below. r(t)=16t2i+1t+6j+(t4)k\mathbf { r } ( t ) = \sqrt { 16 - t ^ { 2 } } \mathbf { i } + \frac { 1 } { t + 6 } \mathbf { j } + ( t - 4 ) \mathbf { k }

(Multiple Choice)
4.9/5
(41)

 Find aT at time t=2 for the space curve r(t)=(6t7)i+t2j10tk. Round your \text { Find } a _ { \mathbf { T } } \text { at time } t = 2 \text { for the space curve } \mathbf { r } ( t ) = ( 6 t - 7 ) \mathbf { i } + t ^ { 2 } \mathbf { j } - 10 t \mathbf { k } \text {. Round your } answer to three decimal places.

(Multiple Choice)
4.9/5
(39)

 Find rt(t)rtt(t) given the following vector function. \text { Find } \mathbf { r } ^ { t } ( t ) \cdot \mathbf { r } ^ { tt } ( t ) \text { given the following vector function. } r(t)=3costi+5sintj\mathbf { r } ( t ) = 3 \cos t \mathbf { i } + 5 \sin t \mathbf { j }

(Multiple Choice)
4.9/5
(23)

 Find aN at time t=2 for the space curve r(t)=(5t7)i+t2j7tk. Round your \text { Find } a _ { \mathbb { N } } \text { at time } t = 2 \text { for the space curve } \mathbf { r } ( t ) = ( 5 t - 7 ) \mathbf { i } + t ^ { 2 } \mathbf { j } - 7 t \mathbf { k } \text {. Round your } answer to three decimal places.

(Multiple Choice)
4.8/5
(30)

Find the principle unit normal vector to the curve given below at the specified point. r(t)=5costi+5sintj,t=5π3\mathbf { r } ( t ) = 5 \cos t \mathbf { i } + 5 \sin t \mathbf { j } , \quad t = \frac { 5 \pi } { 3 }

(Multiple Choice)
4.7/5
(37)

Given the vector-valued function below, evaluate r(11+Δt)r(11)\mathbf { r } ( 11 + \Delta t ) - \mathbf { r } ( 11 ) r(t)=lnti+8tj+4tk\mathbf { r } ( t ) = \ln t \mathbf { i } + \frac { 8 } { t } \mathbf { j } + 4 t \mathbf { k }

(Multiple Choice)
4.7/5
(44)

 Find r(t) given the following. \text { Find } \mathbf { r } ( t ) \text { given the following. } rt(t)=18t5j+6tk,r(0)=2i+18j\mathbf { r } ^ { t } ( t ) = 18 t ^ { 5 } \mathbf { j } + 6 t \mathbf { k } , \mathbf { r } ( 0 ) = 2 \mathbf { i } + 18 \mathbf { j }

(Multiple Choice)
4.8/5
(31)

 The position vector r(t)=4ti+2tj+16t2k describes the path of an object moving in \text { The position vector } \mathbf { r } ( t ) = 4 t \mathbf { i } + 2 t \mathbf { j } + \frac { 1 } { 6 } t ^ { 2 } \mathbf { k } \text { describes the path of an object moving in } space. Find the acceleration a(t)\mathbf { a } ( t ) of the object.

(Multiple Choice)
4.9/5
(29)
Showing 1 - 20 of 83
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)