Exam 3: The Derivative and the Tangent Line Problem

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

 Find the derivative of the function f(x)=7x3+4x2+1\text { Find the derivative of the function } f ( x ) = - 7 x ^ { 3 } + 4 x ^ { 2 } + 1 \text {. }

Free
(Multiple Choice)
4.7/5
(39)
Correct Answer:
Verified

E

 Find the slope-intercept equation of the line tangent to the graph of y=ex when \text { Find the slope-intercept equation of the line tangent to the graph of } y = e ^ { x } \text { when } x=ln3x = \ln 3

Free
(Multiple Choice)
4.8/5
(28)
Correct Answer:
Verified

D

 Suppose that an automobile’s velocity starting from rest is v(t)=240t5t+13 where v is \text { Suppose that an automobile's velocity starting from rest is } v ( t ) = \frac { 240 t } { 5 t + 13 } \text { where } v \text { is } measured in feet per second. Find the acceleration at 9 seconds. Round your answer to one decimal place.

Free
(Multiple Choice)
4.8/5
(38)
Correct Answer:
Verified

B

Assume that x and y are both differentiable functions of t . Find dydt\frac { d y } { d t } when x=49x = 49 and dxdt=17\frac { d x } { d t } = 17 for the equation y=xy = \sqrt { x } .

(Multiple Choice)
4.9/5
(33)

 Find d2ydx2 in terms of x and y given that 37xy=3x7y\text { Find } \frac { d ^ { 2 } y } { d x ^ { 2 } } \text { in terms of } x \text { and } y \text { given that } 3 - 7 x y = 3 x - 7 y

(Multiple Choice)
4.8/5
(38)

Find the derivative of the function. f(x)=1x8f ( x ) = \frac { 1 } { x ^ { 8 } }

(Multiple Choice)
5.0/5
(34)

 Evaluate the derivative of the function y=2x5+2x5 at the point x=3\text { Evaluate the derivative of the function } y = \sqrt [ 5 ] { 2 x ^ { 5 } + 2 x } \text { at the point } x = 3 \text {. }

(Multiple Choice)
4.9/5
(35)

 Evaluate dydx for the equation tan(10x+8y)=10x at the given point (0,0)\text { Evaluate } \frac { d y } { d x } \text { for the equation } \tan ( 10 x + 8 y ) = 10 x \text { at the given point } ( 0,0 ) Round your answer to two decimal places.

(Multiple Choice)
4.8/5
(41)

 Find the derivative of the function f(x)=arcsec(9x)\text { Find the derivative of the function } f ( x ) = \operatorname { arcsec } ( 9 x ) \text {. }

(Multiple Choice)
4.7/5
(40)

A ladder feet long is leaning against the wall of a house (see figure). The base of the ladder is pulled away from the wall at a rate of feet per second. Consider the triangle formed by The side of the house, the ladder, and the ground. Find the rate at which the area of the triangle is Changed when the base of the ladder is feet from the wall. Round your answer to two decimal Places. A ladder feet long is leaning against the wall of a house (see figure). The base of the ladder is pulled away from the wall at a rate of feet per second. Consider the triangle formed by The side of the house, the ladder, and the ground. Find the rate at which the area of the triangle is Changed when the base of the ladder is feet from the wall. Round your answer to two decimal Places.

(Multiple Choice)
4.7/5
(30)

 Find dydt when x=π7\text { Find } \frac { d y } { d t } \text { when } x = \frac { \pi } { 7 } \text {. }

(Multiple Choice)
4.9/5
(33)

Find an equation of the tangent line to the graph of the function (y6)2=5(x5)( y - 6 ) ^ { 2 } = 5 ( x - 5 ) at the point (8.20,2.00)( 8.20,2.00 ) . The coefficients below are given to two decimal places.

(Multiple Choice)
4.8/5
(38)

 Find an equation of the line that is tangent to the graph of f and parallel to the given \text { Find an equation of the line that is tangent to the graph of } f \text { and parallel to the given } line. f(x)=3x3,9xy+9=0f ( x ) = 3 x ^ { 3 } , 9 x - y + 9 = 0

(Multiple Choice)
4.8/5
(31)

 Find dydx by implicit differentiation given that x89+y89=2\text { Find } \frac { d y } { d x } \text { by implicit differentiation given that } x ^ { \frac { 8 } { 9 } } + y ^ { \frac { 8 } { 9 } } = 2 \text {. }

(Multiple Choice)
4.8/5
(41)

 Suppose the table below shows the temperature T(Fˉ) at which a given liquid boils \text { Suppose the table below shows the temperature } T \left( { } ^ { \circ } \bar { F } \right) \text { at which a given liquid boils } at selected pressures pp (pounds per square inch). A model that approximates the data is T=107.97+64.96lnp+9.91pT = 107.97 + 64.96 \ln p + 9.91 \sqrt { p } . Find the rate of change of TT with respect to pp when P=20P = 20 . Round your answer to two decimal places. P 5 10 14.696 (1) 20 30 40 60 80 100 T 234.68 288.88 320.55 346.89 383.19 410.28 450.7 481.26 506.22

(Multiple Choice)
4.8/5
(32)

Use the Product Rule to differentiate. f(t)=t3costf ( t ) = t ^ { - 3 } \cos t

(Multiple Choice)
4.7/5
(34)

 Find the derivative of the function f(x)=ex4ex+4. Simplify your answer. \text { Find the derivative of the function } f ( x ) = \frac { e ^ { x } - 4 } { e ^ { x } + 4 } \text {. Simplify your answer. }

(Multiple Choice)
4.9/5
(44)

 Find dydx by implicit differentiation. \text { Find } \frac { d y } { d x } \text { by implicit differentiation. } sinx+7cos14y=2\sin x + 7 \cos 14 y = 2

(Multiple Choice)
4.8/5
(34)

 Find the derivative of the function h(t)=2sin(arccost)\text { Find the derivative of the function } h ( t ) = 2 \sin ( \arccos t ) \text {. }

(Multiple Choice)
4.8/5
(30)

Newton's Method to approximate the x-value of the indicated point of intersection of the two graphs accurate to three decimal places.Continue the process until two  successive approximations differ by less than 0.001. [Hint: Let h(x)=f(x)g(x).] \text { successive approximations differ by less than } 0.001 \text {. [Hint: Let } h ( x ) = f ( x ) - g ( x ) \text {.] } f(x)=3-x g(x)=  Newton's Method to approximate the x-value of the indicated point of intersection of the two graphs accurate to three decimal places.Continue the process until two  \text { successive approximations differ by less than } 0.001 \text {. [Hint: Let } h ( x ) = f ( x ) - g ( x ) \text {.] }   \begin{array}{l} f(x)=3-x \\ g(x)=\frac{1}{\sqrt{x^{2}+4}} \end{array}

(Multiple Choice)
4.9/5
(40)
Showing 1 - 20 of 191
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)