Exam 14: Iterated Integrals and Area in the Plane

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Convert the integral below from rectangular coordinates to both cylindrical and spherical coordinates, and evaluate the simpler iterated integral. 339x29x2x2+y29xdzdydx \int_{-3}^{3} \int_{-\sqrt{9-x^{2}}}^{\sqrt {9-x^2}}\int_{x^2+y^2}^{9} x d z d y d x

Free
(Multiple Choice)
4.8/5
(28)
Correct Answer:
Verified

E

Set up a triple integral for the volume of the solid bounded by the coordinate planes and the plane given below. z=126x8yz = 12 - 6 x - 8 y

Free
(Multiple Choice)
4.9/5
(31)
Correct Answer:
Verified

A

Evaluate the following iterated integral. 0π9\int _ { 0 } ^ { \frac { \pi } { 9 } } 011cosθ\int_{0} ^ {11 cos\theta} r dr d θ\theta

Free
(Multiple Choice)
4.8/5
(33)
Correct Answer:
Verified

A

Use cylindrical coordinates to find the volume of the solid bounded above by and below by z=15x2+15y2z = 15 x ^ { 2 } + 15 y ^ { 2 } .

(Multiple Choice)
4.9/5
(40)

Find the mass of the triangular lamina with vertices (0,0),(20,40), and (40,0) for ( 0,0 ) , ( 20,40 ) \text {, and } ( 40,0 ) \text { for } the density ρ=k\rho=k

(Multiple Choice)
4.9/5
(30)

 Given f(x,y)=e(x2+y2)/2,R:x2+y2729,x0, use polar coordinates to set \text { Given } f ( x , y ) = e ^ { - \left( x ^ { 2 } + y ^ { 2 } \right) / 2 } , R : x ^ { 2 } + y ^ { 2 } \leq 729 , x \geq 0 \text {, use polar coordinates to set } up and evaluate the double integral Rf(x,y)dA\int _ { R } \int f ( x , y ) d A .

(Multiple Choice)
4.7/5
(36)

Find the average value of f(x,y,z)=x3+y2+z4 over the region Q, where Q is a f ( x , y , z ) = x ^ { 3 } + y ^ { 2 } + z ^ { 4 } \text { over the region } Q \text {, where } Q \text { is a } cube in the first octant bounded by the coordinate planes, and the planes x=4,y=1x = 4 , y = 1 , and z=2z = 2 . The average value of a continuous function f(x,y,z)f ( x , y , z ) over a solid region QQ is 1VQf(x,y,z)dV \frac{1}{V} \iiint_{Q} f(x, y, z) d V where VV is the volume of the solid region QQ .

(Multiple Choice)
4.8/5
(43)

Use a double integral to find the area of the region inside the circle r=17cosθ and r = 17 \cos \theta \text { and } outside the cardioid r=1+15cosθ. Round your answer to two decimal places. r = 1 + 15 \cos \theta \text {. Round your answer to two decimal places. }

(Multiple Choice)
4.8/5
(29)

 Find the average value of f(x,y,z)=x+y+z over the region Q, where Q is a \text { Find the average value of } f ( x , y , z ) = x + y + z \text { over the region } Q \text {, where } Q \text { is a } tetrahedron in the first octant with vertices (0,0,0),(18,0,0),(0,18,0)( 0,0,0 ) , ( 18,0,0 ) , ( 0,18,0 ) and (0,0,18)( 0,0,18 ) . The average value of a continuous function f(x,y,z)f ( x , y , z ) over a solid region QQ is 1VQf(x,y,z)dV \frac{1}{V} \iiint_{Q} f(x, y, z) d V , where VV is the volume of the solid region QQ .

(Multiple Choice)
4.8/5
(30)

 The area of a region R is given by the iterated integral 011y21y215dxdy. Switch the \text { The area of a region } R \text { is given by the iterated integral } \int _ { 0 } ^ { 1 } \int _ { - \sqrt { 1 - y ^ { 2 } } } ^ { \sqrt { 1 - y ^ { 2 } } } 15 d x d y \text {. Switch the } order of integration and show that both orders yield the same area. What is this area?

(Multiple Choice)
4.7/5
(42)

Find the Jacobian (x,y)(u,v) for the following change of variables: \frac { \partial ( x , y ) } { \partial ( u , v ) } \text { for the following change of variables: } x=14(9u4v),y=14(3u+3v)x = \frac { 1 } { 4 } ( 9 u - 4 v ) , y = \frac { 1 } { 4 } ( 3 u + 3 v )

(Multiple Choice)
4.9/5
(37)

Determine the location of the horizontal axis yay _ { a } for figure (b) at which a vertical gate in a dam is to be hinged so that there is no moment causing rotation under the indicated loading (see figure (a)). The model for yay _ { a } is ya=yˉIyhAy _ { a } = \bar { y } - \frac { I _ { y } } { h A } where yˉ\bar { y } is the yy -coordinate of the centroid of the gate, IyI _ { y } is the moment of inertia of the gate about the line y=yˉ,hy = \bar { y } , h is the depth of the centroid below the surface, and AA is the area of the gate.  Determine the location of the horizontal axis  y _ { a }  for figure (b) at which a vertical gate in a dam is to be hinged so that there is no moment causing rotation under the indicated loading (see figure (a)). The model for  y _ { a }  is  y _ { a } = \bar { y } - \frac { I _ { y } } { h A }  where  \bar { y }  is the  y -coordinate of the centroid of the gate,  I _ { y }  is the moment of inertia of the gate about the line  y = \bar { y } , h  is the depth of the centroid below the surface, and  A  is the area of the gate.

(Multiple Choice)
4.8/5
(34)

Use a triple integral to find the volume of the solid shown below.  Use a triple integral to find the volume of the solid shown below.     z = 12 x y , 0 \leq x \leq 4,0 \leq y \leq 2 z=12xy,0x4,0y2z = 12 x y , 0 \leq x \leq 4,0 \leq y \leq 2

(Multiple Choice)
4.8/5
(29)

Find Iz for the indicated solid with density function p=kxyzI _ { z } \text { for the indicated solid with density function } p = k x y z \text {. }  Find  I _ { z } \text { for the indicated solid with density function } p = k x y z \text {. }

(Multiple Choice)
4.9/5
(34)

Use a double integral to find the area enclosed by the graph of r=3+3cosθr = 3 + 3 \cos \theta  Use a double integral to find the area enclosed by the graph of  r = 3 + 3 \cos \theta

(Multiple Choice)
4.8/5
(32)

Evaluate the double integral below. 0π/205+5sinθθrdrdθ\int _ { 0 } ^ { \pi / 2 } \int _ { 0 } ^ { 5 + 5 \sin \theta } \theta r d r d \theta

(Multiple Choice)
4.8/5
(26)

Find the area of the portion of the surface f(x,y)=2+x2y2 that lies above the f ( x , y ) = 2 + x ^ { 2 } - y ^ { 2 } \text { that lies above the } region R={(x,y):x2+y21}R = \left\{ ( x , y ) : x ^ { 2 } + y ^ { 2 } \leq 1 \right\} . Round your answer to two decimal places.

(Multiple Choice)
4.8/5
(33)

Write a double integral that represents the surface area of f(x,y)=10y+9x2 over f ( x , y ) = 10 y + 9 x ^ { 2 } \text { over } the region R: triangle with vertices (0,0),(4,0),(4,4)( 0,0 ) , ( 4,0 ) , ( 4,4 ) . Use a computer algebra system to evaluate the double integral. Round your answer to two decimal places.

(Multiple Choice)
4.8/5
(34)

Use a change of variables to find the volume of the solid region lying below the surface z=(2y+5x)22y7xz = ( 2 y + 5 x ) ^ { 2 } \sqrt { 2 y - 7 x } and above the plane region RR : region bounded by the parallelogram with vertices (0,0),(2,5),(4,26),(6,21)( 0,0 ) , ( - 2,5 ) , ( 4,26 ) , ( 6,21 ) . Round your answer to two decimal places.

(Multiple Choice)
4.8/5
(34)

Convert the integral below from rectangular coordinates to both cylindrical and spherical coordinates, and evaluate the simpler iterated integral. 09081x2081x2y2x2+y2+z2dzdydx \int_{0}^{9} \int_{0}^{\sqrt{81-x^{2}}} \int_{0}^{\sqrt{81-x^{2}-y^{2}}} \sqrt{x^{2}+y^{2}+z^{2}} d z d y d x

(Multiple Choice)
4.9/5
(38)
Showing 1 - 20 of 118
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)