Exam 15: Vector Fields

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the area of the lateral surface over the curve C in the xy-plane and under the surface z=f(x,y)z = f ( x , y ) where Lateral surface area =cf(x,y)ds= \int _ { c } f ( x , y ) d s . f(x,y)=9f ( x , y ) = 9 , C: line from (0,0)( 0,0 ) to (12,13)( 12,13 )

Free
(Multiple Choice)
4.8/5
(35)
Correct Answer:
Verified

D

Evaluate cFdr \int_{c} \mathrm{F} \cdot d r where F(x,y)=x2yi+xy32j F(x, y)=x^{2} y \mathbf{i}+x y^{\frac{3}{2}} \mathbf{j} and r(t)=(1+8cost)i+(9cos2t)j,0tπ2\mathbf { r } ( t ) = ( 1 + 8 \cos t ) \mathbf { i } + \left( 9 \cos ^ { 2 } t \right) \mathbf { j } , 0 \leq t \leq \frac { \pi } { 2 }

Free
(Multiple Choice)
4.8/5
(30)
Correct Answer:
Verified

A

 Use Stokes’s Theorem to evaluate CFdr.Use a computer algebra system to \text { Use Stokes's Theorem to evaluate } \int _ { C } \overrightarrow { \mathbf { F } } \cdot d \overrightarrow { \mathbf { r } } \text {.Use a computer algebra system to } verify your results. Note: C is oriented counterclockwise as viewed from above. (x,y,z)=36xz+y+36xy S:z=121--,z\geq0

Free
(Multiple Choice)
4.9/5
(35)
Correct Answer:
Verified

E

Evaluate f(x,y,z)dS \iint f(x, y, z) d S , where f(x,y,z)=++ S:z=+=16,0\leqz\leq16.

(Multiple Choice)
4.9/5
(35)

 Let E=xi+yj+2zk\text { Let } \mathbf { E } = x \mathbf { i } + y \mathbf { j } + 2 z \mathbf { k } be an electrostatic field. Use Gauss's Law to find the total charge enclosed by the closed surface consisting of the hemisphere z=1x2y2z = \sqrt { 1 - x ^ { 2 } - y ^ { 2 } } and its circular base in the xyx y -plane.

(Multiple Choice)
4.8/5
(29)

Calculate the line integral along CFdr \int_{C} \mathbf{F} \cdot d \mathbf{r} for F(x,y)=4x2i+4xyj \mathbf{F}(x, y)=4 x^{2} \mathbf{i}+4 x y \mathbf{j} and C is any path starting at the point (0,0)( 0,0 ) and ending at (5,5)( 5,5 ) .

(Multiple Choice)
4.7/5
(40)

 Find the mass of the surface lamina S of density ρ\text { Find the mass of the surface lamina } S \text { of density } \rho \text {. } S:64x2y2,ρ(x,y,z)=kzS : \sqrt { 64 - x ^ { 2 } - y ^ { 2 } } , \rho ( x , y , z ) = k z

(Multiple Choice)
4.8/5
(33)

 Let F(x,y,z)=(xy2+z)i+(x2y+z)j+ek and let S be the surface bounded by \text { Let } \mathbf { F } ( x , y , z ) = \left( x y ^ { 2 } + z \right) \mathbf { i } + \left( x ^ { 2 } y + z \right) \mathbf { j } + e \mathbf { k } \text { and let } S \text { be the surface bounded by } z=x2+y2z = \sqrt { x ^ { 2 } + y ^ { 2 } } and z=4z = 4 . Verify the Divergence Theorem by evaluating SFNds\iint_{S} \mathbf{F} \cdot \mathbf{N} d s as a surface integral and as a triple integral. Round your answer to two decimal places.

(Multiple Choice)
4.8/5
(44)

 Evaluate C1y3dx+(27xx3)dy, where C1 is the unit circle given by \text { Evaluate } \int _ { C _ { 1 } } y ^ { 3 } d x + \left( 27 x - x ^ { 3 } \right) d y \text {, where } C _ { 1 } \text { is the unit circle given by } r(t)=costi+sintj,0t2π\mathbf { r } ( t ) = \cos t \mathbf { i } + \sin t \mathbf { j } , 0 \leq t \leq 2 \pi

(Multiple Choice)
4.8/5
(37)

Use Green's Theorem to calculate the work done by the force F on a particle that is \overrightarrow { \mathbf { F } } \text { on a particle that is } moving counterclockwise around the closed path C. (x,y)=5xy+(x+y) C:+=16

(Multiple Choice)
4.8/5
(31)

Find the work done by a person weighing 180 pounds walking exactly one revolution up a circular helical staircase of radius 4 feet if the person rises 14 feet.

(Multiple Choice)
4.8/5
(31)

 Find Iz for the lamina z=x2+y2,0z3\text { Find } I _ { z } \text { for the lamina } z = x ^ { 2 } + y ^ { 2 } , 0 \leq z \leq 3 with uniform density of 1 Use a computer algebra system to verify your result.

(Multiple Choice)
4.8/5
(26)

Find the divergence at (4,0,0) for the vector field ( 4,0,0 ) \text { for the vector field } F(x,y,z)=exsinyiexcosyj+z2k\mathbf { F } ( x , y , z ) = e ^ { x } \sin y \mathbf { i } - e ^ { x } \cos y \mathbf { j } + z ^ { 2 } \mathbf { k }

(Multiple Choice)
4.9/5
(35)

 Use Stokes’s Theorem to evaluate CFdr\text { Use Stokes's Theorem to evaluate } \int _ { C } \overrightarrow { \mathbf { F } } \cdot d \overrightarrow { \mathbf { r } } Use a computer algebra system to verify your results. Note: CC is oriented counterclockwise as viewed from above. (x,y,z)=xyz+y+z S:z=,0\leqx\leq3,0\leqy\leq3

(Multiple Choice)
4.7/5
(33)

Determine the tangent plane for the hyperboloid x2+y2z2=121 at (11,0,0)x ^ { 2 } + y ^ { 2 } - z ^ { 2 } = 121 \text { at } ( 11,0,0 )

(Multiple Choice)
4.9/5
(38)

 Use Stokes’s Theorem to evaluate CFdr where \text { Use Stokes's Theorem to evaluate } \int _ { C } \mathbf { F } \cdot d r \text { where } F(x,y,z)=lnx2+y2i+arctanxyj+k\mathbf { F } ( x , y , z ) = - \ln \sqrt { x ^ { 2 } + y ^ { 2 } } \mathbf { i } + \arctan \frac { x } { y } \mathbf { j } + \mathbf { k } and SS is z=252x3yz = 25 - 2 x - 3 y over r=2sin2θr = 2 \sin 2 \theta in the first octant. Use a computer algebra system to verify your result.

(Multiple Choice)
4.8/5
(29)

Determine whether or not the vector field is conservative. F(x,y)=35x6y6i^+30x7y5j^\vec { F } ( x , y ) = 35 x ^ { 6 } y ^ { 6 } \hat { \mathbf { i } } + 30 x ^ { 7 } y ^ { 5 } \hat { \mathbf { j } }

(Multiple Choice)
4.9/5
(38)

Find the work done by the force field F on a particle moving along the given path. \overrightarrow { \mathbf { F } } \text { on a particle moving along the given path. } F(x,y)=yi^xj^,C:y=25x2\overrightarrow { \mathbf { F } } ( x , y ) = - y \hat { \mathbf { i } } - x \hat { \mathbf { j } } , \quad C : y = \sqrt { 25 - x ^ { 2 } } from (5,0)( 5,0 ) to (5,0)( - 5,0 )

(Multiple Choice)
4.9/5
(33)

Use Green's Theorem to calculate the work done by the force F(x,y)=(18x2+y)i+19xy2j\overrightarrow { \mathbf { F } } ( x , y ) = \left( 18 x ^ { 2 } + y \right) \mathbf { i } + 19 x y ^ { 2 } \mathbf { j } on a particle that is moving counterclockwise around the closed path CC where CC is the boundary of the region lying between the graphs of y=x,y=0y = \sqrt { x } , y = 0 , and x=9x = 9 . Round your answer to two decimal places.

(Multiple Choice)
4.8/5
(39)

Evaluate the line integral using the Fundamental Theorem of Line Integrals. Use a computer algebra system to verify your results. C(7yi^+7xj^)dr\int _ { C } ( 7 y \hat { \mathbf { i } } + 7 x \hat { \mathbf { j } } ) \cdot d \overrightarrow { \mathbf { r } } C: a smooth curve from (0,0)( 0,0 ) to (2,4)( 2,4 )

(Multiple Choice)
4.8/5
(36)
Showing 1 - 20 of 108
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)