Exam 4: Extrema on an Interval

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Sketch the graph of the function f(x)=x2x21f ( x ) = \frac { x ^ { 2 } } { x ^ { 2 } - 1 } using any extrema, intercepts, symmetry, and asymptotes.

Free
(Multiple Choice)
4.8/5
(34)
Correct Answer:
Verified

D

Find the point on the graph of the function f(x)=xf ( x ) = \sqrt { x } that is closest to the point (18,0)( 18,0 )

Free
(Multiple Choice)
4.9/5
(46)
Correct Answer:
Verified

A

Match the function f(x)=3xx2+2f ( x ) = \frac { 3 x } { x ^ { 2 } + 2 } with one of the following graphs.

Free
(Multiple Choice)
4.8/5
(42)
Correct Answer:
Verified

E

Determine the x-coordinate(s) of any relative extrema and inflection points of the function y=xlnx56y = x \ln \frac { x ^ { 5 } } { 6 }

(Multiple Choice)
4.9/5
(42)

Identify the open intervals on which the function y=9x18cosx,0<x<2π is y = 9 x - 18 \cos x , 0 < x < 2 \pi \text { is } increasing or decreasing.

(Multiple Choice)
4.9/5
(46)

Find all relative extrema of the function f(x)=x8/93f ( x ) = x ^ { 8 / 9 } - 3 . Use the Second Derivative Test where applicable.

(Multiple Choice)
4.7/5
(31)

A meteorologist measures the atmospheric pressure P (in kilograms per square meter) at altitude h (in kilometers). The data are shown below. Use the regression capabilities of the Graphing utility to find a linear model for the revised data points obtained by plotting the points (h,lnP)( h , \ln P ) h 0 5 10 15 20 p 28,085 15169 6,458 3,371 1,405

(Multiple Choice)
4.9/5
(37)

 Locate the absolute extrema of the function f(x)=cos(πx) on the closed interval \text { Locate the absolute extrema of the function } f ( x ) = \cos ( \pi x ) \text { on the closed interval } [0,12]\left[ 0 , \frac { 1 } { 2 } \right]

(Multiple Choice)
4.9/5
(36)

 Find the value of the derivative (if it exists) of the function f(x)=15x at the \text { Find the value of the derivative (if it exists) of the function } f ( x ) = 15 - | x | \text { at the } extremum point (0,15)( 0,15 ) \text { Find the value of the derivative (if it exists) of the function } f ( x ) = 15 - | x | \text { at the }  extremum point  ( 0,15 )

(Multiple Choice)
4.8/5
(32)

Find the points of inflection and discuss the concavity of the function f(x)=xx+16f ( x ) = x \sqrt { x + 16 }

(Multiple Choice)
4.9/5
(41)

Find any critical numbers of the function g(t)=t2t,t<2g ( t ) = t \sqrt { 2 - t } , \mathrm { t } < 2

(Multiple Choice)
4.8/5
(37)

Find the differential dy of the function y=x23x2y = - x ^ { 2 } - 3 x - 2

(Multiple Choice)
4.9/5
(41)

Find all points of inflection of the graph of the function f(x)=2sin7x+sin14x on f ( x ) = 2 \sin 7 x + \sin 14 x \text { on } the interval . Round your answer to three decimal places wherever applicable.

(Multiple Choice)
4.7/5
(38)

Find two positive numbers such that the sum of the first and twice the second is 56 and whose product is a maximum.

(Multiple Choice)
4.8/5
(36)

Determine whether Rolle's Theorem can be applied to f(x)=x213x on the closed f ( x ) = \frac { x ^ { 2 } - 13 } { x } \text { on the closed } interval [13,13][ - 13,13 ] . If Rolle's Theorem can be applied, find all values of cc in the open interval (13,13)( - 13,13 ) such that ft(c)=0f ^ {t } ( c ) = 0

(Multiple Choice)
4.8/5
(33)

Determine whether Rolle's Theorem can be applied to the function f(x)=(x5)(x6)(x7)f ( x ) = ( x - 5 ) ( x - 6 ) ( x - 7 ) on the closed interval [5,7][ 5,7 ] . If Rolle's Theorem can be applied, find all numbers cc in the open interval (5,7)( 5,7 ) such that ft(c)=0f ^ { t } ( c ) = 0 .

(Multiple Choice)
4.9/5
(34)

Match the function f(x)=2x64x2+2f ( x ) = \frac { - 2 x } { \sqrt { 64 x ^ { 2 } + 2 } } , use a graphing utility to complete the table and estimate the limit as x approaches infinity. x 1 1 1 1 1 1 1 f(x)

(Multiple Choice)
5.0/5
(40)

 Locate the absolute extrema of the function y=x22cosx on the closed interval \text { Locate the absolute extrema of the function } y = x ^ { 2 } - 2 \cos x \text { on the closed interval } [3,5]. Round your answers to four decimal places. [ - 3,5 ] \text {. Round your answers to four decimal places. }

(Multiple Choice)
4.9/5
(29)

A sector with central angle θ is \theta \text { is } is cut from a circle of radius 10 inches, and the edges of the sector are brought together to form a cone. Find the magnitude of such that the volume of The cone is a maximum.

(Multiple Choice)
4.9/5
(29)

 Find the critical number of the function f(x)=6x2+108x+7\text { Find the critical number of the function } f ( x ) = - 6 x ^ { 2 } + 108 x + 7

(Multiple Choice)
4.8/5
(29)
Showing 1 - 20 of 147
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)