Exam 9: Sequences

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Approximate the sum of the series by using the first six terms. n=0(1)n4n!\sum _ { n = 0 } ^ { \infty } \frac { ( - 1 ) ^ { n } 4 } { n ! }

Free
(Multiple Choice)
4.8/5
(36)
Correct Answer:
Verified

E

 Determine the convergence or divergence of the series n=1n7n2+1 using any \text { Determine the convergence or divergence of the series } \sum _ { n = 1 } ^ { \infty } \frac { n } { 7 n ^ { 2 } + 1 } \text { using any } appropriate test.

Free
(Multiple Choice)
4.9/5
(45)
Correct Answer:
Verified

B

The infinite series n=1n13n+4 diverges ?\text {The infinite series } \sum _ { n = 1 } ^ { \infty } \frac { n } { 13 n + 4 } \text { diverges ?}

Free
(True/False)
5.0/5
(29)
Correct Answer:
Verified

False

Find a geometric power series for the function centered at 0, (i) by the technique shown in Examples 1 and 2 and (ii) by long division. f(x)=104xf ( x ) = \frac { 10 } { 4 - x }

(Multiple Choice)
4.7/5
(39)

 Find the positive values of p for which the series n=21n(lnn)p converges. \text { Find the positive values of } p \text { for which the series } \sum _ { n = 2 } ^ { \infty } \frac { 1 } { n ( \ln n ) ^ { p } } \text { converges. }

(Multiple Choice)
4.9/5
(44)

Identify the interval of convergence of a power series n=1(3)nnxn1\sum _ { n = 1 } ^ { \infty } ( - 3 ) ^ { n } n x ^ { n - 1 }

(Multiple Choice)
4.8/5
(33)

 Use the Ratio Test to determine the convergence or divergence of the series n=0n!8n\text { Use the Ratio Test to determine the convergence or divergence of the series } \sum _ { n = 0 } ^ { \infty } \frac { n ! } { 8 ^ { n } } \text {. }

(Multiple Choice)
4.8/5
(32)

 Sketch the graph of the sequence of partial sum of the series n=12n34\text { Sketch the graph of the sequence of partial sum of the series } \sum _ { n = 1 } ^ { \infty } \frac { 2 } { \sqrt [ 4 ] { n ^ { 3 } } } \text {. }

(Multiple Choice)
4.8/5
(19)

Use the Integral Test to determine the convergence or divergence of the series. n=2lnnn10\sum _ { n = 2 } ^ { \infty } \frac { \ln n } { n ^ { 10 } }

(Multiple Choice)
4.9/5
(35)

Determine the minimal number of terms required to approximate the sum of the series with an error of less than 0.008. n=1(1)n+12n31\sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n + 1 } } { 2 n ^ { 3 } - 1 }

(Multiple Choice)
4.9/5
(40)

Find all values of x for which the series converges. For these values of x, write the sum of the series as a function of x. n=010(x810)n\sum _ { n = 0 } ^ { \infty } 10 \left( \frac { x - 8 } { 10 } \right) ^ { n }

(Multiple Choice)
4.7/5
(35)

Determine the convergence or divergence of the sequence with the given nth term. If the sequence converges, find its limit. an=3n4na _ { n } = \frac { 3 ^ { n } } { 4 ^ { n } }

(Multiple Choice)
4.8/5
(30)

Find the values of xx for which the series n=09(x1)n\sum _ { n = 0 } ^ { \infty } 9 ( x - 1 ) ^ { n } converges.

(Multiple Choice)
4.8/5
(33)

Use the Direct Comparison Test to determine the convergence or divergence of the series n=08n9n+7\sum _ { n = 0 } ^ { \infty } \frac { 8 ^ { n } } { 9 ^ { n } + 7 } .

(Multiple Choice)
4.8/5
(31)

Find a first-degree polynomial function P1 whose value and slope agree with the value and slope of ff at x=cx = c . What is P1P _ { 1 } called? f(x)=tanx,c=π6f ( x ) = \tan x , c = - \frac { \pi } { 6 }

(Multiple Choice)
5.0/5
(34)

Find the interval of convergence of the power series n=0(x12)n112n1\sum _ { n = 0 } ^ { \infty } \frac { ( x - 12 ) ^ { n - 1 } } { 12 ^ { n - 1 } } . (Be sure to include a check for convergence at the endpoints of the interval.)

(Multiple Choice)
4.7/5
(37)

Find all values of xx for which the series n=09(x89)n\sum _ { n = 0 } ^ { \infty } 9 \left( \frac { x - 8 } { 9 } \right) ^ { n } converges.

(Multiple Choice)
4.8/5
(33)

 Find a power series for the function 1212x+13 centered at 0\text { Find a power series for the function } \frac { 12 } { 12 x + 13 } \text { centered at } 0 \text {. }

(Multiple Choice)
4.9/5
(40)

 The series n=1(1)n9n diverges. \text { The series } \sum _ { n = 1 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { 9 ^ { n } } \text { diverges. }

(True/False)
4.8/5
(40)

Use the Direct Comparison Test to determine the convergence or divergence of the series n=1154n1\sum _ { n = 1 } ^ { \infty } \frac { 1 } { 5 ^ { 4 } \sqrt { n } - 1 }

(Multiple Choice)
4.9/5
(41)
Showing 1 - 20 of 179
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)