Exam 5: Antiderivatives and Indefinite Integration

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Sketch the region whose area is given by the definite integral and then use a geometric formula to evaluate the integral. 05(6t+1)dt\int _ { 0 } ^ { 5 } ( 6 t + 1 ) d t

(Multiple Choice)
4.8/5
(33)

Find the indefinite integral. x2+16x+6x3+24x2+18x1dx\int \frac { x ^ { 2 } + 16 x + 6 } { x ^ { 3 } + 24 x ^ { 2 } + 18 x - 1 } d x

(Multiple Choice)
4.9/5
(40)

Determine the area of the given region. y=4x(1x)y = 4 x ( 1 - x )  Determine the area of the given region.  y = 4 x ( 1 - x )

(Multiple Choice)
4.9/5
(31)

Write the limit limΔx0i=1n4ci(7ci)2Δxi, as a definite integral on the interval \lim _ { | \Delta x | \rightarrow 0 } \sum _ { i = 1 } ^ { n } 4 c _ { i } \left( 7 - c _ { i } \right) ^ { 2 } \Delta x _ { i } , \text { as a definite integral on the interval } [0,8][ 0,8 ] where cic _ { i } is any point in the ithi ^ { t h } subinterval.

(Multiple Choice)
4.7/5
(35)

Find the indefinite integral 10sins+7cossds\int 10 \sin s + 7 \cos s d s

(Multiple Choice)
4.8/5
(46)

Evaluate the integral. 34(24x21)dx\int _ { 3 } ^ { 4 } \left( 24 x ^ { 2 } - 1 \right) d x given, 34x3dx=1754\int _ { 3 } ^ { 4 } x ^ { 3 } d x = \frac { 175 } { 4 } 34x2dx=373\int _ { 3 } ^ { 4 } x ^ { 2 } d x = \frac { 37 } { 3 } 34xdx=72\int _ { 3 } ^ { 4 } x d x = \frac { 7 } { 2 } 4 34dx=1\int _ { 3 } ^ { 4 } d x = 1

(Multiple Choice)
4.7/5
(37)

Find the indefinite integral. 2xe4x2dx\int 2 x e ^ { 4 x ^ { 2 } } d x

(Multiple Choice)
4.9/5
(35)

A ball is thrown vertically upwards from a height of ft with an initial velocity of 30ft30 \mathrm { ft } per second. How high will the ball go? Note that the acceleration of the ball is given by a(t)=32a ( t ) = - 32 feet per second per second.

(Multiple Choice)
4.9/5
(33)

Evaluate 1e(1+lnx)5xdx\int _ { 1 } ^ { e } \frac { ( 1 + \ln x ) ^ { 5 } } { x } d x

(Multiple Choice)
5.0/5
(48)

Find the indefinite integral (8t+7)dt\int ( - 8 t + 7 ) d t

(Multiple Choice)
4.7/5
(38)

Find the area of the region bounded by the graphs of the equations y=x+2x,x=1,x=5y = \frac { x + 2 } { x } , x = 1 , x = 5 , and y=0y = 0 . Round your answer to four decimal places.

(Multiple Choice)
4.8/5
(32)

Use Simpson's Rule to approximate the value of the definite integral 0π46xtan2xdx \int_{0}^{\frac{\pi}{4}} 6 x \tan 2 x d x with n=4n = 4 . Round your answer to four decimal places.

(Multiple Choice)
4.8/5
(38)

 Find the integral x15x2+1dx\text { Find the integral } \int \frac { x - 15 } { x ^ { 2 } + 1 } d x \text {. }

(Multiple Choice)
4.9/5
(29)

 Find tan6θdθ\text { Find } \int \tan 6 \theta d \theta \text {. }

(Multiple Choice)
4.8/5
(34)

Evaluate the definite integral of the algebraic function. 36(5u+4)du\int _ { 3 } ^ { 6 } ( 5 u + 4 ) d u Use a graphing utility to verify your results.

(Multiple Choice)
4.7/5
(41)

Evaluate the definite integral. n2m4exdx\int _ { n 2 } ^ { \operatorname { m } 4 } e ^ { - x } d x

(Multiple Choice)
4.9/5
(40)

 Find F(x) given \text { Find } F ^ { \prime } ( x ) \text { given } F(x)=xx+3(10t+1)dtF ( x ) = \int _ { x } ^ { x + 3 } ( 10 t + 1 ) d t

(Multiple Choice)
5.0/5
(43)

Find the indefinite integral. 136+(x4)2dx\int \frac { 1 } { 36 + ( x - 4 ) ^ { 2 } } d x

(Multiple Choice)
4.9/5
(37)

Use the summation formulas to rewrite the expression k=1n24k(k1)n7\sum _ { k = 1 } ^ { n } \frac { 24 k ( k - 1 ) } { n ^ { 7 } } without the summation notation.

(Multiple Choice)
4.9/5
(41)

Evaluate the integral. 78(24s+1)ds\int _ { 7 } ^ { 8 } ( - 24 s + 1 ) d s given, 8x3dx=16954\int ^ { 8 } x ^ { 3 } d x = \frac { 1695 } { 4 } \text {, } x2dx=1693\int x ^ { 2 } d x = \frac { 169 } { 3 } xdx=152,\int x d x = \frac { 15 } { 2 } , dx=1\int d x = 1

(Multiple Choice)
4.9/5
(30)
Showing 61 - 80 of 167
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)