Exam 2: A Preview of Calculus

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the following limit if it exists: limln(x3)\lim \ln ( x - 3 ) . Use ±\pm \infty when appropriate. x3+x \rightarrow 3 ^ { + }

Free
(Multiple Choice)
4.9/5
(31)
Correct Answer:
Verified

D

A sphere has a volume of 4.76 cubic inches. What is the radius of the sphere? Round your answer to four decimal places.

Free
(Multiple Choice)
4.8/5
(32)
Correct Answer:
Verified

A

Complete the table and use the result to estimate the limit. limx0sin3xx3\lim _ { x \rightarrow 0 } \frac { \sin ^ { 3 } x } { x ^ { 3 } } x -0.1 -0.01 -0.001 0.001 0.01 0.1 f(x)

Free
(Multiple Choice)
4.8/5
(44)
Correct Answer:
Verified

C

Determine the limit (if it exists). limx012(1cosx)x2\lim _ { x \rightarrow 0 } \frac { 12 ( 1 - \cos x ) } { x ^ { 2 } }

(Multiple Choice)
4.8/5
(37)

 Consider the function f(x)=6xx2 and the point P(2,8) on the graph of f\text { Consider the function } f ( x ) = 6 x - x ^ { 2 } \text { and the point } P ( 2,8 ) \text { on the graph of } f \text {. } Graph ff and the secant line passing through P(2,8)P ( 2,8 ) and Q(x,f(x))Q ( x , f ( x ) ) for x=3x = 3 .

(Multiple Choice)
4.8/5
(34)

Find the limit. limx49x2+36x\lim _ { x \rightarrow - 4 } 9 x ^ { 2 } + 36 x

(Multiple Choice)
5.0/5
(43)

 Suppose that limxcf(x)=11 and limxcg(x)=3. Find the following limit. \text { Suppose that } \lim _ { x \rightarrow c } f ( x ) = - 11 \text { and } \lim _ { x \rightarrow c } g ( x ) = - 3 \text {. Find the following limit. } limxc[f(x)g(x)]\lim _ { x \rightarrow c } [ f ( x ) - g ( x ) ]

(Multiple Choice)
4.9/5
(28)

 Let f(x)=x25 and g(x)=2x. Find the limit \text { Let } f ( x ) = - x ^ { 2 } - 5 \text { and } g ( x ) = 2 x \text {. Find the limit } limx2g(f(x))\lim _ { x \rightarrow - 2 } g ( f ( x ) )

(Multiple Choice)
4.8/5
(29)

 Find the x-values (if any) at which the function f(x)=xx2100 is not continuous. \text { Find the } x \text {-values (if any) at which the function } f ( x ) = \frac { x } { x ^ { 2 } - 100 } \text { is not continuous. } Which of the discontinuities are removable?

(Multiple Choice)
4.8/5
(39)

Find the limit (if it exists). limx1f(x)\lim _ { x \rightarrow 1 ^ { - } } f ( x ) , where f(x)={x3+10,x<1x+10,x1f ( x ) = \left\{ \begin{array} { c c } x ^ { 3 } + 10 , & x < 1 \\ x + 10 , & x \geq 1 \end{array} \right.

(Multiple Choice)
4.8/5
(32)

Find the limit. limx2cosπx3\lim _ { x \rightarrow 2 } \cos \frac { \pi x } { 3 }

(Multiple Choice)
4.7/5
(29)

Find the limit (if it exists). limx5x+43x5\lim _ { x \rightarrow 5 } \frac { \sqrt { x + 4 } - 3 } { x - 5 }

(Multiple Choice)
4.8/5
(36)

 Let f(x)={4x,x10,x=1\text { Let } f ( x ) = \left\{ \begin{array} { l l } 4 - x , & x \neq 1 \\0 , & x = 1\end{array} \right. \text {. } Determine the following limit. (Hint: Use the graph to calculate the limit.) limx1f(x)\lim _ { x \rightarrow 1 } f ( x ) \text { Let } f ( x ) = \left\{ \begin{array} { l l }  4 - x , & x \neq 1 \\ 0 , & x = 1 \end{array} \right. \text {. }  Determine the following limit. (Hint: Use the graph to calculate the limit.)  \lim _ { x \rightarrow 1 } f ( x )

(Multiple Choice)
4.7/5
(34)

Decide whether the following problem can be solved using precalculus, or whether calculus is required. If the problem can be solved using precalculus, solve it. If the Problem seems to require calculus, use a graphical or numerical approach to estimate the Solution.mFind the distance traveled in 16 seconds by an object traveling at a constant velocity of 20 feet Per second.

(Multiple Choice)
4.9/5
(47)

Find the limit. limx5cos(πx6)\lim _ { x \rightarrow 5 } \cos \left( \frac { \pi x } { 6 } \right)

(Multiple Choice)
4.8/5
(36)

 Determine whether f(x)=x10x29 approaches  or  as x approaches 3 from \text { Determine whether } f ( x ) = \frac { x ^ { 10 } } { x ^ { 2 } - 9 } \text { approaches } \infty \text { or } - \infty \text { as } x \text { approaches } - 3 \text { from } the left and from the right by completing the tables below. x -3.5 -3.1 -3.01 -3.001 f(x) x -2.999 -2.99 -2.9 -2.5 f(x)

(Multiple Choice)
4.8/5
(40)

Find all the vertical asymptotes (if any) of the graph of the function f(x)=5(x3)2f ( x ) = \frac { 5 } { ( x - 3 ) ^ { 2 } }

(Multiple Choice)
4.8/5
(25)

 Find the limit (if it exists). Note that f(x)=(x) represents the greatest integer \text { Find the limit (if it exists). Note that } f ( x ) = ( | x | ) \text { represents the greatest integer } function. limx6+(3[x]8)\lim _ { x \rightarrow - 6 ^ { + } } ( - 3 [ | x | ] - 8 )

(Multiple Choice)
4.8/5
(35)

Use the graph as shown to determine the following limits, and discuss the continuity of the function at x=4x = - 4 (i) limx4+f(x)\lim _ { x \rightarrow - 4 ^ { + } } f ( x ) (ii) limx4f(x)\lim _ { x \rightarrow - 4 ^ { - } } f ( x ) (iii) limx4f(x)\lim _ { x \rightarrow - 4 } f ( x )  Use the graph as shown to determine the following limits, and discuss the continuity of the function at  x = - 4   (i)  \lim _ { x \rightarrow - 4 ^ { + } } f ( x )  (ii)  \lim _ { x \rightarrow - 4 ^ { - } } f ( x )  (iii)  \lim _ { x \rightarrow - 4 } f ( x )

(Multiple Choice)
5.0/5
(28)

 Consider the function f(x)=x and the point P(9,3) on the graph of f\text { Consider the function } f ( x ) = \sqrt { x } \text { and the point } P ( 9,3 ) \text { on the graph of } f \text {. } Estimate the slope mm of the tangent line of ff at P(9,3)P ( 9,3 ) . Round your answer to four decimal places.

(Multiple Choice)
4.8/5
(31)
Showing 1 - 20 of 92
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)