Exam 5: Antiderivatives and Indefinite Integration

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

The height above the ground of an object thrown upward from a point feet above the ground with an initial velocity of feet per second is given by the function f(t)=16t2+v0t+s0f ( t ) = - 16 t ^ { 2 } + v _ { 0 } t + s _ { 0 } . A balloon, rising vertically with a velocity of 24 feet per second, releases a sandbag at the instant it is 60 feet above the ground. How many seconds after its release will the bag strike the ground? Round your answer to three decimal places.

(Multiple Choice)
4.7/5
(36)

 Find xx4dx\text { Find } \int \frac { \sqrt { x } } { x - 4 } d x \text {. }

(Multiple Choice)
4.8/5
(30)

 Find the limit of s(n) as n\text { Find the limit of } s ( n ) \text { as } n \rightarrow \infty \text {. } s(n)=1n2[n(n+1)(5n+1)10]s ( n ) = \frac { 1 } { n ^ { 2 } } \left[ \frac { n ( n + 1 ) ( 5 n + 1 ) } { 10 } \right]

(Multiple Choice)
4.9/5
(35)

 Find Ft(x) given \text { Find } F ^ { t } ( x ) \text { given } F(x)=2x2xs2dsF ( x ) = \int _ { - 2 x } ^ { 2 x } s ^ { 2 } d s

(Multiple Choice)
4.9/5
(30)

 Find the area of the region given below bounded by the graph of y=6x\text { Find the area of the region given below bounded by the graph of } y = \frac { 6 } { x } \text {. } \text { Find the area of the region given below bounded by the graph of } y = \frac { 6 } { x } \text {. }

(Multiple Choice)
4.9/5
(35)

Find the smallest n such that the error estimate in the approximation of the definite integral 012sin(x2)dx\int _ { 0 } ^ { 1 } 2 \sin \left( x ^ { 2 } \right) d x is less than 0.000010.00001 using the Trapezoidal Rule. Use a graphing utility to estimate the maximum of the absolute value of the second derivative.

(Multiple Choice)
4.8/5
(37)

 Find the integral tt4+81dt\text { Find the integral } \int \frac { t } { t ^ { 4 } + 81 } d t \text {. }

(Multiple Choice)
4.9/5
(34)

 Use Simpson’s Rule with n=14 to approximate π using the equation \text { Use Simpson's Rule with } n = 14 \text { to approximate } \pi \text { using the equation } π=0141+x2dx\pi = \int _ { 0 } ^ { 1 } \frac { 4 } { 1 + x ^ { 2 } } d x . Round your answer to five decimal places.

(Multiple Choice)
4.8/5
(33)

 Find the integral sinx13+cos2xdx\text { Find the integral } \int \frac { \sin x } { 13 + \cos ^ { 2 } x } d x \text {. }

(Multiple Choice)
4.8/5
(43)

Find the indefinite integral. ln(e16x152)dx\int \ln \left( \mathrm { e } ^ { 16 x ^ { 15 } - 2 } \right) d x

(Multiple Choice)
4.8/5
(32)

 Find the solution of the differential equation drdt=sec2ttant+1 which passes through the \text { Find the solution of the differential equation } \frac { d r } { d t } = \frac { \sec ^ { 2 } t } { \tan t + 1 } \text { which passes through the } point (π,5)( \pi , 5 )

(Multiple Choice)
4.7/5
(45)

Find the limit of s(n) as ns ( n ) \text { as } n \rightarrow \infty s(n)=5n3(n3(n+1)27]s ( n ) = \frac { 5 } { n ^ { 3 } } \left( \frac { n ^ { 3 } ( n + 1 ) ^ { 2 } } { 7 } \right]

(Multiple Choice)
5.0/5
(40)

Find the indefinite integral. csc(4x)dx\int \csc ( 4 x ) d x

(Multiple Choice)
4.8/5
(35)

 Use the differential equation dydx=181+x2 and the initial condition y(9)=π to \text { Use the differential equation } \frac { d y } { d x } = \frac { 1 } { 81 + x ^ { 2 } } \text { and the initial condition } y ( 9 ) = \pi \text { to } find y.

(Multiple Choice)
4.8/5
(38)

The oscillating current in an electrical circuit is I=2sin(60πt)+cos(120πt) where II = 2 \sin ( 60 \pi t ) + \cos ( 120 \pi t ) \text { where } I is measured in amperes and t is measured in seconds. Find the average current for the time interval 0t11200 \leq t \leq \frac { 1 } { 120 } . Round your answer to three decimal places.

(Multiple Choice)
4.8/5
(37)

Determine the area of the given region. y=x+sinx,0xπy = x + \sin x , 0 \leq x \leq \pi  Determine the area of the given region.   y = x + \sin x , 0 \leq x \leq \pi

(Multiple Choice)
4.7/5
(42)

 Suppose a population of bacteria is changing at a rate of dpdt=4,0001+0.5t, where t is \text { Suppose a population of bacteria is changing at a rate of } \frac { d p } { d t } = \frac { 4,000 } { 1 + 0.5 t } \text {, where } t \text { is } the time in days. The initial population (when t=0t = 0 ) is 1,500 . Identify an equation that gives the population at any time tt and use it to find the population when t=5t = 5 days. Round your answer to the nearest integer.

(Multiple Choice)
4.8/5
(31)

Find the indefinite integral (12s312s+3)ds\int \left( 12 s ^ { 3 } - 12 s + 3 \right) d s

(Multiple Choice)
4.9/5
(32)

Use the limit process to find the area of the region between the graph of the function y=16x2y = 16 - x ^ { 2 } and xx -axis over the interval [4,4][ - 4,4 ]

(Multiple Choice)
4.8/5
(27)

 Find the area of the shaded region for the function y=4x2+4x+8\text { Find the area of the shaded region for the function } y = \frac { 4 } { x ^ { 2 } + 4 x + 8 } \text {. } \text { Find the area of the shaded region for the function } y = \frac { 4 } { x ^ { 2 } + 4 x + 8 } \text {. }

(Multiple Choice)
4.8/5
(37)
Showing 21 - 40 of 167
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)