Exam 13: Vector Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

A force with magnitude 14 N14 \mathrm {~N} acts directly upward from the xy-plane on an object with mass 6 kg\mathrm { kg } . The object starts at the origin with initial velocity v(0)=7i2j\mathbf { v } ( 0 ) = 7 \mathbf { i } - 2 \mathbf { j } . Find its position function. Select the correct answer.

(Multiple Choice)
4.8/5
(29)

 Find the limit limt(e4t,1t,7t2t2+1)\text { Find the limit } \lim _ { t \rightarrow \infty } \left( e ^ { - 4 t } , \frac { 1 } { t } , \frac { 7 t ^ { 2 } } { t ^ { 2 } + 1 } \right)

(Short Answer)
4.9/5
(38)

Find the point of intersection of the tangent lines to the curve r(t)=sinπt,7sinπt,cosπt\mathbf { r } ( t ) = \langle \sin \pi t , 7 \sin \pi t , \cos \pi t \rangle , at the points where t=0t = 0 and t=0.5t = 0.5 .

(Short Answer)
4.8/5
(50)

Let r(t)={2t,(et2)t,ln(t+1)}\mathbf { r } ( t ) = \left\{ \sqrt { 2 - t } , \frac { \left( e ^ { t } - 2 \right) } { t } , \ln ( t + 1 ) \right\} Find the domain of rr .

(Multiple Choice)
4.8/5
(36)

At what point on the curve x=t3,y=9t,z=t4x = t ^ { 3 } , y = 9 t , z = t ^ { 4 } is the normal plane parallel to the plane 3x+9y4z=4?3 x + 9 y - 4 z = 4 ?

(Short Answer)
4.8/5
(47)

A projectile is fired from a height of 350ft350 \mathrm { ft } with an initial speed of 200ft/sec200 \mathrm { ft } / \mathrm { sec } and an angle of elevation of 3030 ^ { \circ } . a. What are the scalar tangential and normal components of acceleration of the projectile? b. What are the scalar tangential and normal components of acceleration of the projectile when the projectile is at its maximum height?

(Short Answer)
5.0/5
(37)

Find the velocity, acceleration, and speed of an object with position function r(t)=3ti+(6t2)j\mathbf { r } ( t ) = 3 t \mathbf { i } + \left( 6 - t ^ { 2 } \right) \mathbf { j } for t=1t = 1 . Sketch the path of the object and its velocity and acceleration vectors.

(Essay)
4.8/5
(45)

Find the velocity of a particle that has the given acceleration and the given initial velocity. a(t)=3k,v(0)=12i7j\mathbf { a } ( t ) = 3 k , \mathbf { v } ( 0 ) = 12 \mathbf { i } - 7 \mathbf { j }

(Short Answer)
4.9/5
(37)

Evaluate the integral. (e9ti+8tj+lntk)dt\int \left( e ^ { 9 t } \mathbf { i } + 8 t \mathbf { j } + \ln t \mathbf { k } \right) d t

(Short Answer)
4.8/5
(41)

Find the length of the curve r(t)=2ti+t2j+lntk,1te3\mathbf { r } ( t ) = 2 t \mathbf { i } + t ^ { 2 } \mathbf { j } + \ln t \mathbf { k } , 1 \leq t \leq e ^ { 3 } Select the correct answer.

(Multiple Choice)
4.9/5
(37)

Find the limit limt0[(t2+3)i+cos2tj10k]\lim _ { t \rightarrow 0 } \left[ \left( t ^ { 2 } + 3 \right) \mathbf { i } + \cos 2 t \mathbf { j } - 10 \mathbf { k } \right] Select the correct answer.

(Multiple Choice)
4.8/5
(30)

 Find the derivative ddt[r(4t)r(t4)]\text { Find the derivative } \frac { d } { d t } \left[ \mathbf { r } ( 4 t ) \cdot \mathbf { r } \left( t ^ { 4 } \right) \right]

(Short Answer)
4.9/5
(36)

Find the length of the curve r(t)=2titj+tk,2t1\mathbf { r } ( t ) = - 2 t \mathbf { i } - t \mathbf { j } + t \mathbf { k } , - 2 \leq t \leq 1 Select the correct answer.

(Multiple Choice)
4.9/5
(32)

Find rtt(t)\mathbf { r } ^ { tt } ( t ) for the function given. r(t)=2i+sintj+costk\mathbf { r } ( t ) = 2 \mathbf { i } + \sin t \mathbf { j } + \cos t \mathbf { k }

(Short Answer)
4.9/5
(31)

 A particle moves with position function r(t)=5costi+5sintj+5tk\text { A particle moves with position function } \mathbf { r } ( t ) = 5 \cos t \mathbf { i } + 5 \sin t \mathbf { j } + 5 t \mathbf { k }  Find the normal component of the acceleration vector. \text { Find the normal component of the acceleration vector. }

(Short Answer)
4.7/5
(36)

Find the acceleration of a particle with the following position function. r(t)=2t22,4t)\mathbf { r } ( t ) = \left\langle 2 t ^ { 2 } - 2,4 t \right)

(Short Answer)
4.8/5
(23)

 Find equations of the normal plane to x=t,y=t2,z=t3 at the point (2,4,8)\text { Find equations of the normal plane to } x = t , y = t ^ { 2 } , z = t ^ { 3 } \text { at the point } ( 2,4,8 ) \text {. }

(Short Answer)
4.9/5
(38)

Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point. x=t9,y=t3,z=t6;(1,1,1)x = t ^ { 9 } , y = t ^ { 3 } , z = t ^ { 6 } ; ( 1,1,1 )

(Short Answer)
4.8/5
(28)

Find the unit tangent and unit normal vectors T(t)\mathrm { T } ( t ) and N(t)\mathrm { N } ( t ) for the curve CC defined by r(t)=ti+2t2j\mathbf { r } ( t ) = t \mathbf { i } + 2 t ^ { 2 } \mathbf { j } . Sketch the graph of CC , and show T(t)\mathbf { T } ( t ) and N(t)N ( t ) for t=1t = 1 .

(Essay)
4.8/5
(34)
Showing 141 - 159 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)