Exam 13: Vector Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the integral (4ti+6t2j+4k)dt\int \left( 4 t \mathbf { i } + 6 t ^ { 2 } \mathbf { j } + 4 \mathbf { k } \right) d t

(Multiple Choice)
4.9/5
(33)

Sketch the curve of the vector function r(t)=3ti+(3t+8)j,1t2\mathbf { r } ( t ) = 3 t \mathbf { i } + ( 3 t + 8 ) \mathbf { j } , - 1 \leq t \leq 2 , and indicate the orientation of the curve.

(Essay)
5.0/5
(38)

The following table gives coordinates of a particle moving through space along a smooth curve. x y z 0.5 5.8 9.1 4.3 1 12.6 14.9 16.8 1.5 25.6 21.2 29.4 2 39.2 39.5 37.9 2.5 42.4 42.4 43 Find the average velocity over the time interval [1, 2].

(Multiple Choice)
4.7/5
(34)

The helix r1(t)=4costi+sintj+tk\mathbf { r } _ { 1 } ( t ) = 4 \cos t \mathbf { i } + \sin t \mathbf { j } + t \mathbf { k } intersects the curve r2(t)=(4+t)i+6t2j+5t3k\mathbf { r } _ { 2 } ( t ) = ( 4 + t ) \mathbf { i } + 6 t ^ { 2 } \mathbf { j } + 5 t ^ { 3 } \mathbf { k } at the point (4,0,0)( 4,0,0 ) . Find the angle of intersection.

(Short Answer)
5.0/5
(38)

Find the velocity of a particle that has the given acceleration and the given initial velocity. a(t)=3k,v(0)=18i7j\mathbf { a } ( t ) = 3 \mathrm { k } , \mathbf { v } ( 0 ) = 18 \mathbf { i } - 7 \mathbf { j }

(Short Answer)
4.9/5
(38)

Sketch the curve of the vector function r(t)=5sinti+4costj\mathbf { r } ( t ) = 5 \sin t \mathbf { i } + 4 \cos t \mathbf { j } , and indicate the orientation of the curve.

(Essay)
4.8/5
(40)

Find the curvature of the curve r(t)=3sin4ti+3cos4tj+3tkr ( t ) = 3 \sin 4 t \mathbf { i } + 3 \cos 4 t \mathbf { j } + 3 t \mathbf { k } .

(Multiple Choice)
4.8/5
(33)

Reparametrize the curve with respect to arc length measured from the point where t=0t = 0 in the direction of increasing tt . r(t)=(5+3t)i+(8+9t)j(6t)k\mathbf { r } ( t ) = ( 5 + 3 t ) \mathbf { i } + ( 8 + 9 t ) \mathbf { j } - ( 6 t ) \mathbf { k }

(Multiple Choice)
4.9/5
(34)

The torsion of a curve defined by r(t)\mathbf { r } ( t ) is given by τ=(rt×rtt)rtttrt×rtt2\tau = \frac { \left( \mathbf { r } ^ { t } \times \mathbf { r } ^ {tt } \right) \cdot \mathbf { r } ^ { ttt } } { \left| \mathbf { r } ^ {t } \times \mathbf { r } ^ {t t } \right| ^ { 2 } } Find the torsion of the curve defined by r(t)=cos2ti+sin2tj+5tk\mathbf { r } ( t ) = \cos 2 t \mathbf { i } + \sin 2 t \mathbf { j } + 5 t \mathbf { k } .

(Multiple Choice)
4.9/5
(32)

Find the velocity and position vectors of an object with acceleration a(t)=4i72j+(72t+4)k\mathbf { a } ( t ) = 4 \mathbf { i } - 72 \mathbf { j } + ( 72 t + 4 ) \mathbf { k } , initial velocity v(0)=i+k\mathbf { v } ( 0 ) = \mathbf { i } + \mathbf { k } , and initial position r(0)=j+3k\mathbf { r } ( 0 ) = \mathbf { j } + 3 \mathbf { k } .

(Short Answer)
4.8/5
(37)

A particle moves with position function r(t)=(21t7t35)i+21t2j\mathbf { r } ( t ) = \left( 21 t - 7 t ^ { 3 } - 5 \right) \mathbf { i } + 21 t ^ { 2 } \mathbf { j } . Find the tangential component of the acceleration vector.

(Multiple Choice)
4.8/5
(42)

A ball is thrown at an angle of 4545 ^ { \circ } to the ground. If the ball lands 90 m90 \mathrm {~m} away, what was the initial speed of the ball? Let g=9.82 m/sg = 9.82 \mathrm {~m} / \mathrm { s } .

(Short Answer)
4.9/5
(35)

Find r(t)\mathbf { r } ( t ) satisfying the conditions for rt(t)=6e6ti+7etj+etk,r(0)=ij+5k\mathbf { r } ^ { t } ( t ) = 6 e ^ { 6 t } \mathbf { i } + 7 e ^ { - t } \mathbf { j } + e ^ { t } \mathbf { k } , \quad \mathbf { r } ( 0 ) = \mathbf { i } - \mathbf { j } + 5 \mathbf { k }

(Multiple Choice)
4.8/5
(34)

 Find an expression for ddt[x(t).(y(t)×z(t))]\text { Find an expression for } \frac { d } { d t } [ x ( t ) . ( y ( t ) \times z ( t ) ) ] \text {. }

(Essay)
4.9/5
(32)

If r(t)=7i+tcosπj+4sinπtk\mathbf { r } ( t ) = 7 \mathbf { i } + t \cos \pi \mathbf { j } + 4 \sin \pi t \mathbf { k } , evaluate 01r(t)dt\int _ { 0 } ^ { 1 } r ( t ) d t

(Multiple Choice)
4.9/5
(31)

The torsion of a curve defined by r(t)r ( t ) is given by τ=(rt×rtt)rtttrt×rtt2\tau = \frac { \left( \mathbf { r } ^ { t } \times \mathbf { r } ^ { tt } \right) \cdot \mathbf { r } ^ { ttt } } { \left| \mathbf { r } ^ { t } \times \mathbf { r } ^ { tt} \right| ^ { 2 } } Find the torsion of the curve defined by r(t)=cos7ti+sin7tj+4tk\mathbf { r } ( t ) = \cos 7 t \mathbf { i } + \sin 7 t \mathbf { j } + 4 t \mathbf { k } .

(Short Answer)
4.8/5
(34)

Find r(t)\mathbf { r } ^ { \prime \prime } ( t ) for the function given. r(t)=8i+sintj+costk\mathbf { r } ( t ) = 8 \mathbf { i } + \sin t \mathbf { j } + \cos t \mathbf { k }

(Short Answer)
4.8/5
(32)

The position function of a particle is given by r(t)=5t2,5t,5t2100t}\mathbf { r } ( t ) = \left\langle 5 t ^ { 2 } , 5 t , 5 t ^ { 2 } - 100 t \right\} When is the speed a minimum?

(Short Answer)
4.7/5
(37)

 Find rt(t) and rtt(t) for r(t)=tcos9tsin9t,tsin10t+cos10t\text { Find } \mathbf { r } ^ { t } ( t ) \text { and } \mathbf { r } ^ {tt } ( t ) \text { for } \mathbf { r } ( t ) = \langle t \cos 9 t - \sin 9 t , t \sin 10 t + \cos 10 t \rangle

(Essay)
4.9/5
(38)

Find the derivative of the vector function. r(t)=a+tb+t2c\mathbf { r } ( t ) = a + t b + t ^ { 2 } c

(Short Answer)
4.8/5
(44)
Showing 61 - 80 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)