Exam 13: Vector Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Evaluate the integral. (e9ti+8tj+lntk)dt\int \left( e ^ { 9 t } \mathbf { i } + 8 t \mathbf { j } + \ln t \mathbf { k } \right) d t

(Short Answer)
4.8/5
(38)

Find rtt(t)\mathbf { r } ^ { tt } ( t ) for the function given. r(t)=8i+sintj+costk\mathbf { r } ( t ) = 8 \mathbf { i } + \sin t \mathbf { j } + \cos t \mathbf { k }

(Short Answer)
4.9/5
(37)

Find the domain of the vector function r(t)=8t,1t9,lnt\mathbf { r } ( t ) = \left\langle 8 \sqrt { t } , \frac { 1 } { t - 9 } , \ln t \right\rangle

(Multiple Choice)
4.9/5
(39)

Let r(t)={6t,(et8)t,ln(t+1)}\mathbf { r } ( t ) = \left\{ \sqrt { 6 - t } , \frac { \left( e ^ { t } - 8 \right) } { t } , \ln ( t + 1 ) \right\} Find the domain of rr .

(Short Answer)
4.9/5
(37)

The following table gives coordinates of a particle moving through space along a smooth curve. x y z 0.5 5.8 9.1 4.3 1 12.6 14.9 16.8 1.5 25.6 21.2 29.4 2 39.2 39.5 37.9 2.5 42.4 42.4 43 Find the average velocity over the time interval [0.5,1.5][ 0.5,1.5 ] . Select the correct answer.

(Multiple Choice)
4.7/5
(41)

Find the length of the curve r(t)=2ti+t2j+lntk,1te3\mathbf { r } ( t ) = 2 t \mathbf { i } + t ^ { 2 } \mathbf { j } + \ln t \mathbf { k } , 1 \leq t \leq e ^ { 3 } . Select the correct answer.

(Multiple Choice)
4.7/5
(40)

 Find the limit limt(e4t,1t,7t2t2+1)\text { Find the limit } \lim _ { t \rightarrow \infty } \left( e ^ { - 4 t } , \frac { 1 } { t } , \frac { 7 t ^ { 2 } } { t ^ { 2 } + 1 } \right)

(Short Answer)
4.8/5
(39)

A particle moves with position function r(t)=42ti+e4tj+e4tkr ( t ) = 4 \sqrt { 2 } t \mathbf { i } + e ^ { 4 t } \mathbf { j } + e ^ { - 4 t } \mathbf { k } . Find the acceleration of the particle.

(Short Answer)
4.8/5
(42)

Find a vector function that represents the curve of intersection of the two surfaces: the top half of the ellipsoid x2+5y2+5z2=25x ^ { 2 } + 5 y ^ { 2 } + 5 z ^ { 2 } = 25 and the parabolic cylinder y=x2y = x ^ { 2 } .

(Short Answer)
4.8/5
(47)

The helix r1(t)=4costi+sintj+tk\mathbf { r } _ { 1 } ( t ) = 4 \cos t \mathbf { i } + \sin t \mathbf { j } + t \mathbf { k } intersects the curve r2(t)=(4+t)i+6t2j+5t3k\mathbf { r } _ { 2 } ( t ) = ( 4 + t ) \mathbf { i } + 6 t ^ { 2 } \mathbf { j } + 5 t ^ { 3 } \mathbf { k } at the point (4,0,0)( 4,0,0 ) . Find the angle of intersection.

(Multiple Choice)
4.7/5
(33)

 Find the velocity, acceleration, and speed of an object with position vector r(t)=t,8+t,8t\text { Find the velocity, acceleration, and speed of an object with position vector } \mathbf { r } ( t ) = \langle \sqrt { t } , 8 + \sqrt { t } , 8 t \rangle \text {. }

(Short Answer)
4.7/5
(34)

Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point. x=cost,y=4e6t,z=4e6t;(1,4,4)x = \cos t , y = 4 e ^ { 6 t } , z = 4 e ^ { - 6 t } ; ( 1,4,4 )

(Short Answer)
4.8/5
(45)

Reparametrize the curve with respect to arc length measured from the point where t=0t = 0 in the direction of increasing tt . r(t)=(7+3t)i+(10+9t)j(6t)k\mathbf { r } ( t ) = ( 7 + 3 t ) \mathbf { i } + ( 10 + 9 t ) \mathbf { j } - ( 6 t ) \mathbf { k }

(Multiple Choice)
5.0/5
(41)

Find the acceleration of a particle with the given position function. r(t)=9sinti+10tj8costk\mathbf { r } ( t ) = 9 \sin t \mathbf { i } + 10 t \mathbf { j } - 8 \cos t \mathbf { k }

(Short Answer)
4.7/5
(38)

A projectile is fired with an initial speed of 200 m/s200 \mathrm {~m} / \mathrm { s } and angle of elevation 6060 ^ { \circ } . Find the range of the projectile. Select the correct answer.

(Multiple Choice)
4.7/5
(37)

If r(t)=t,t5,t2\mathbf { r } ( t ) = \left\langle t , t ^ { 5 } , t ^ { 2 } \right\rangle , find r(t)\mathbf { r } ^ { \prime \prime } ( t )

(Multiple Choice)
4.7/5
(37)

If r(t)=(t,t9,t11)\mathbf { r } ( t ) = \left( t , t ^ { 9 } , t ^ { 11 } \right) , find rtt(t)\mathbf { r } ^ { tt } ( t ) Select the correct answer.

(Multiple Choice)
5.0/5
(34)

Find the limit. limt0+(4cost,12sint,7tlnt)\lim _ { t \rightarrow 0 ^ { + } } ( 4 \cos t , 12 \sin t , 7 t \ln t )

(Short Answer)
4.9/5
(40)

Find the limit limt0[(t2+3)i+cos5tj6k]\lim _ { t \rightarrow 0 } \left[ \left( t ^ { 2 } + 3 \right) \mathbf { i } + \cos 5 t \mathbf { j } - 6 \mathbf { k } \right] .

(Multiple Choice)
4.8/5
(31)

The torsion of a curve defined by r(t)\mathbf { r } ( t ) is given by τ=(rt×rtt)rtttrt×rtt2\tau = \frac { \left( \mathbf { r } ^ { t } \times \mathbf { r } ^ { tt } \right) \cdot \mathbf { r } ^ { ttt } } { \left| \mathbf { r } ^ { t } \times \mathbf { r } ^ { t t } \right| ^ { 2 } } Find the torsion of the curve defined by r(t)=cos2ti+sin2tj+5tk\mathbf { r } ( t ) = \cos 2 t \mathbf { i } + \sin 2 t \mathbf { j } + 5 t \mathbf { k } .

(Short Answer)
4.9/5
(34)
Showing 41 - 60 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)