Exam 13: Vector Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

At what point on the curve x=t3,y=9t,z=t4x = t ^ { 3 } , y = 9 t , z = t ^ { 4 } is the normal plane parallel to the plane 3x+9y4z=4?3 x + 9 y - 4 z = 4 ?

(Multiple Choice)
4.8/5
(40)

 If r(t)=3i+5tcosπtj+2sinπtk, evaluate 01r(t)dt\text { If } \mathbf { r } ( t ) = 3 \mathbf { i } + 5 t \cos \pi t \mathbf { j } + 2 \sin \pi t \mathbf { k } \text {, evaluate } \int _ { 0 } ^ { 1 } r ( t ) d t

(Short Answer)
4.8/5
(37)

Find the velocity and position vectors of an object with acceleration a(t)=4i72tj+(72t+4)k\mathbf { a } ( t ) = 4 \mathbf { i } - 72 t \mathbf { j } + ( 72 t + 4 ) \mathbf { k } , initial velocity v(0)=i+k\mathbf { v } ( 0 ) = \mathbf { i } + \mathbf { k } , and initial position r(0)=j+3k\mathbf { r } ( 0 ) = \mathbf { j } + 3 \mathbf { k } .

(Essay)
4.7/5
(37)

 Find the integral (sin7ti+cos7tj+et/5k)dt\text { Find the integral } \int \left( \sin 7 t \mathbf { i } + \cos 7 t \mathbf { j } + e ^ { - t / 5 } \mathbf { k } \right) d t \text {. }

(Short Answer)
4.7/5
(32)

 Find the unit tangent vector for the curve given by r(t)=18t8,13t3,t\text { Find the unit tangent vector for the curve given by } \mathbf { r } ( t ) = \left\langle \frac { 1 } { 8 } t ^ { 8 } , \frac { 1 } { 3 } t ^ { 3 } , t \right\rangle \text {. }

(Short Answer)
4.9/5
(42)

Find the limit limt0[(t2+3)i+cos5tj6k]\lim _ { t \rightarrow 0 } \left[ \left( t ^ { 2 } + 3 \right) \mathbf { i } + \cos 5 t \mathbf { j } - 6 \mathbf { k } \right] Select the correct answer.

(Multiple Choice)
4.8/5
(36)

Find the integral (4ti+6t2j+4k)dt\int \left( 4 t \mathbf { i } + 6 t ^ { 2 } \mathbf { j } + 4 \mathbf { k } \right) d t . Select the correct answer.

(Multiple Choice)
4.8/5
(31)

Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point. x=cost,y=4e6t,z=4e6t;(1,4,4)x = \cos t , y = 4 e ^ { 6 t } , z = 4 e ^ { - 6 t } ; ( 1,4,4 )

(Short Answer)
4.8/5
(37)

Reparametrize the curve with respect to arc length measured from the point where t=0t = 0 in the direction of increasing tt . r(t)=(3+3t)i+(4+9t)j(6t)k\mathbf { r } ( t ) = ( 3 + 3 t ) \mathbf { i } + ( 4 + 9 t ) \mathbf { j } - ( 6 t ) \mathbf { k }

(Short Answer)
4.9/5
(37)

Sketch the curve of the vector function r(t)=t2,t3,t,t0\mathbf { r } ( t ) = \left\langle t ^ { 2 } , t ^ { 3 } , t \right\rangle , t \geq 0 , and indicate the orientation of the curve.

(Essay)
4.8/5
(47)

Find the length of the curve r(t)=2ti+4costj+4sintk,0t2π\mathbf { r } ( t ) = 2 t \mathbf { i } + 4 \cos t \mathbf { j } + 4 \sin t \mathbf { k } , 0 \leq t \leq 2 \pi Select the correct answer.

(Multiple Choice)
4.7/5
(40)

Find the length of the curve r(t)=3ti+2tjtk,2t1\mathbf { r } ( t ) = - 3 t \mathbf { i } + 2 t \mathbf { j } - t \mathbf { k } , - 2 \leq t \leq 1 .

(Multiple Choice)
4.7/5
(37)

Find the unit tangent vector T(t)T ( t ) . r(t)=2sint,4t,2cost}\mathbf { r } ( t ) = \langle 2 \sin t , 4 t , 2 \cos t \}

(Short Answer)
4.9/5
(38)

 Find the integral (sin7ti+cos7tj+et/5k)dt\text { Find the integral } \int \left( \sin 7 t \mathbf { i } + \cos 7 t \mathbf { j } + e ^ { - t / 5 } \mathbf { k } \right) d t \text {. }

(Short Answer)
4.8/5
(37)

Find the domain of the vector function r(t)=7ti+1t9j\mathbf { r } ( t ) = 7 t \mathbf { i } + \frac { 1 } { t - 9 } \mathbf { j } . Select the correct answer.

(Multiple Choice)
4.7/5
(32)

The curvature of the curve given by the vector function rr is k(t)=rt(t)×rtt(t)rt(t)3\mathrm { k } ( t ) = \frac { \left| \mathbf { r } ^ { t } ( t ) \times \mathbf { r } ^ { tt } ( t ) \right| } { \left| \mathbf { r } ^ { t } ( t ) \right| ^ { 3 } } Use the formula to find the curvature of r(t)=13t,et,et)\mathbf { r } ( t ) = \left\langle \sqrt { 13 } t , e ^ { t } , e ^ { - t } \right) at the point (0,1,1)( 0,1,1 ) . Select the correct answer.

(Multiple Choice)
4.7/5
(30)

Sketch the curve of the vector function r(t)=5sinti+6costj\mathbf { r } ( t ) = 5 \sin t \mathbf { i } + 6 \cos t \mathbf { j } , and indicate the orientation of the curve.

(Essay)
4.9/5
(35)

Find the speed of a particle with the given position function. r(t)=ti+6t2j+5t6kr ( t ) = t \mathbf { i } + 6 t ^ { 2 } \mathbf { j } + 5 t ^ { 6 } \mathbf { k }

(Short Answer)
4.9/5
(35)

Sketch the curve of the vector function r(t)=5sinti+6costj\mathbf { r } ( t ) = 5 \sin t \mathbf { i } + 6 \cos t \mathbf { j } , and indicate the orientation of the curve.

(Essay)
5.0/5
(26)

Let CC be a smooth curve defined by r(t)=2i+3tj+2t2k\mathbf { r } ( t ) = 2 \mathbf { i } + 3 t \mathbf { j } + 2 t ^ { 2 } \mathbf { k } , and let T(t)\mathbf { T } ( t ) and N(t)\mathbf { N } ( t ) be the unit tangent vector and unit normal vector to CC corresponding to tt . The plane determined by T\mathbf { T } and N\mathbf { N } is called the osculating plane. Find an equation of the osculating plane of the curve described by r(t)\mathbf { r } ( t ) at t=1t = 1 .

(Multiple Choice)
4.9/5
(37)
Showing 21 - 40 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)