Exam 13: Vector Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

A projectile is fired with an initial speed of 700 m/s700 \mathrm {~m} / \mathrm { s } and angle of elevation 6060 ^ { \circ } . Find the range of the projectile.

(Multiple Choice)
4.9/5
(36)

Sketch the curve of the vector function r(t)=3ti+(2t+3)j,1t2\mathbf { r } ( t ) = 3 t \mathbf { i } + ( 2 t + 3 ) \mathbf { j } , - 1 \leq t \leq 2 , and indicate the orientation of the curve.

(Essay)
4.8/5
(43)

Find the domain of the vector function r(t)=8ti+1t4j\mathbf { r } ( t ) = 8 t \mathbf { i } + \frac { 1 } { t - 4 } \mathbf { j } . Select the correct answer.

(Multiple Choice)
4.8/5
(33)

Find the limit limt0[(t2+3)i+cos5tj6k]\lim _ { t \rightarrow 0 } \left[ \left( t ^ { 2 } + 3 \right) \mathbf { i } + \cos 5 t \mathbf { j } - 6 \mathbf { k } \right] . Select the correct answer.

(Multiple Choice)
4.9/5
(39)

Let CC be a smooth curve defined by r(t)=7i+tj+4t2k\mathbf { r } ( t ) = 7 \mathbf { i } + t \mathbf { j } + 4 t ^ { 2 } \mathbf { k } , and let T(t)\mathrm { T } ( t ) and N(t)\mathrm { N } ( t ) be the unit tangent vector and unit normal vector to CC corresponding to tt . The plane determined by T\mathbf { T } and N\mathbf { N } is called the osculating plane. Find an equation of the osculating plane of the curve described by r(t)\mathbf { r } ( t ) at t=1t = 1 .

(Short Answer)
4.8/5
(29)

Find a vector function describing the curve of intersection of the cylinder x2+y2=25x ^ { 2 } + y ^ { 2 } = 25 and the plane x+y+6z=7x + y + 6 z = 7 .

(Short Answer)
4.7/5
(33)

 Find the velocity, acceleration, and speed of an object with position vector r(t)=et(cos2t,sin2t,8}\text { Find the velocity, acceleration, and speed of an object with position vector } \mathbf { r } ( t ) = e ^ { t } ( \cos 2 t , \sin 2 t , 8 \} \text {. }

(Short Answer)
4.9/5
(39)

Find r(t)\mathbf { r } ^ { \prime } ( t ) for the function given. r(t)=4i+sintj+costk\mathbf { r } ( t ) = 4 \mathbf { i } + \sin t \mathbf { j } + \cos t \mathbf { k }

(Short Answer)
4.7/5
(39)

Use Simpson's Rule with n=4\mathrm { n } = 4 to estimate the length of the arc of the curve with equations x=t,y=4t,z=t2+1x = \sqrt { t } , y = \frac { 4 } { t } , z = t ^ { 2 } + 1 , from (1,4,2)( 1,4,2 ) to (2,1,17)( 2,1,17 ) . Round your answer to four decimal places. Select the correct answer.

(Multiple Choice)
4.9/5
(37)

Find r(t)\mathbf { r } ^ { \prime \prime } ( t ) for the function given. r(t)=8i+sintj+costk\mathbf { r } ( t ) = 8 \mathbf { i } + \sin t \mathbf { j } + \cos t \mathbf { k }

(Multiple Choice)
4.8/5
(43)

Find parametric equations for the tangent line to the curve with parametric equations x=9tx = 9 t , y=7t2,z=4t3y = 7 t ^ { 2 } , z = 4 t ^ { 3 } at the point with t=1t = 1 . Select the correct answer.

(Multiple Choice)
4.8/5
(35)

Find the length of the curve r(t)=2ti+t2j+lntk,1te6\mathbf { r } ( t ) = 2 t \mathbf { i } + t ^ { 2 } \mathbf { j } + \ln t \mathbf { k } , 1 \leq t \leq e ^ { 6 } . Select the correct answer.

(Multiple Choice)
4.8/5
(35)

 Find the curvature of y=x4\text { Find the curvature of } y = x ^ { 4 } \text {. }

(Short Answer)
4.8/5
(37)

What force is required so that a particle of mass mm has the following position function? r(t)=5t3i+9t2j+7t3kr ( t ) = 5 t ^ { 3 } \mathbf { i } + 9 t ^ { 2 } \mathbf { j } + 7 t ^ { 3 } \mathbf { k }

(Short Answer)
4.8/5
(40)

Find the acceleration of a particle with the following position function. r(t)=2t22,4t}\mathbf { r } ( t ) = \left\langle 2 t ^ { 2 } - 2,4 t \right\} Select the correct answer.

(Multiple Choice)
4.8/5
(49)

Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point. x=t11,y=t5,z=t6;(1,1,1)x = t ^ { 11 } , y = t ^ { 5 } , z = t ^ { 6 } ; ( 1,1,1 )

(Short Answer)
4.8/5
(40)

Find the position vector of a particle that has the given acceleration and the given initial velocity and position. a(t)=4k,v(0)=i+j20k,r(0)=4i+9j\mathbf { a } ( t ) = - 4 \mathbf { k } , \mathbf { v } ( 0 ) = \mathbf { i } + \mathbf { j } - 20 \mathbf { k } , \mathbf { r } ( 0 ) = 4 \mathbf { i } + 9 \mathbf { j }

(Short Answer)
4.8/5
(34)

A mortar shell is fired with a muzzle speed of 250ft/sec250 \mathrm { ft } / \mathrm { sec } . Find the angle of elevation of the mortar if the shell strikes a target located 1100ft1100 \mathrm { ft } away. Round your answer to 2 decimal places.

(Multiple Choice)
4.8/5
(35)

A particle moves with position function r(t)=(21t7t35)i+21t2j\mathbf { r } ( t ) = \left( 21 t - 7 t ^ { 3 } - 5 \right) \mathbf { i } + 21 t ^ { 2 } \mathbf { j } Find the tangential component of the acceleration vector.

(Short Answer)
4.8/5
(37)

The curvature of the curve given by the vector function rr is k(t)=rt(t)×rtt(t)rt(t)3k ( t ) = \frac { \left| \mathbf { r } ^ { t } ( t ) \times \mathbf { r } ^ { tt } ( t ) \right| } { \left| \mathbf { r } ^ {t } ( t ) \right| ^ { 3 } } Use the formula to find the curvature of r(t)=(19t,et,et}\mathbf { r } ( t ) = \left( \sqrt { 19 } t , e ^ { t } , e ^ { - t } \right\} at the point (0,1,1)( 0,1,1 ) .

(Multiple Choice)
4.8/5
(37)
Showing 101 - 120 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)