Exam 13: Vector Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the length of the curve r(t)=2ti+t2j+lntk,1te7\mathbf { r } ( t ) = 2 t \mathbf { i } + t ^ { 2 } \mathbf { j } + \ln t \mathbf { k } , 1 \leq t \leq e ^ { 7 } Select the correct answer.

(Multiple Choice)
5.0/5
(39)

 For the curve given by r(t)=2sint,5t,2cost}, find the unit normal vector. \text { For the curve given by } \mathbf { r } ( t ) = \langle 2 \sin t , 5 t , 2 \operatorname { cost } \} \text {, find the unit normal vector. }

(Short Answer)
4.7/5
(35)

Find the curvature of the curve r(t)=2ti+6tj+9k\mathbf { r } ( t ) = 2 t \mathbf { i } + 6 t \mathbf { j } + 9 \mathbf { k } Select the correct answer.

(Multiple Choice)
4.8/5
(27)

Find the speed of a particle with the given position function. r(t)=ti+5t2j+3t6k\mathrm { r } ( t ) = t \mathbf { i } + 5 t ^ { 2 } \mathbf { j } + 3 t ^ { 6 } \mathbf { k }

(Multiple Choice)
4.9/5
(35)

Find the limit. limt0+(10cost,30sint,5tlnt}\lim _ { t \rightarrow 0 ^ { + } } ( 10 \cos t , 30 \sin t , 5 t \ln t \}

(Short Answer)
4.8/5
(42)

 If r(t)=7i+3tcosπj+4sinπkk, evaluate 01r(t)dt\text { If } \mathbf { r } ( t ) = 7 \mathbf { i } + 3 t \cos \pi \mathbf { j } + 4 \sin \pi k \mathbf { k } \text {, evaluate } \int _ { 0 } ^ { 1 } r ( t ) d t

(Short Answer)
4.8/5
(42)

Find the curvature of the curve r(t)=6ti+6tj+3k\mathbf { r } ( t ) = 6 t \mathbf { i } + 6 t \mathbf { j } + 3 \mathbf { k } . Select the correct answer.

(Multiple Choice)
4.8/5
(39)

 Find an expression for ddt[x(t).(y(t)×z(t))]\text { Find an expression for } \frac { d } { d t } [ x ( t ) . ( y ( t ) \times z ( t ) ) ] \text {. }

(Short Answer)
4.8/5
(32)

Find the curvature of the curve r(t)=2sin7ti+2cos7tj+2tk\mathbf { r } ( t ) = 2 \sin 7 t \mathbf { i } + 2 \cos 7 t \mathbf { j } + 2 t \mathbf { k } . Select the correct answer.

(Multiple Choice)
4.8/5
(46)

Find the velocity of a particle that has the given acceleration and the given initial velocity. Select the correct answer. a(t)=3k,v(0)=16i3j\mathbf { a } ( t ) = 3 k , \mathbf { v } ( 0 ) = 16 \mathbf { i } - 3 \mathbf { j }

(Multiple Choice)
4.9/5
(36)

The helix r1(t)=2costi+sintj+tk\mathbf { r } _ { 1 } ( t ) = 2 \cos t \mathbf { i } + \sin t \mathbf { j } + t \mathbf { k } intersects the curve r2(t)=(2+t)i+10t2j+9t3k\mathbf { r } _ { 2 } ( t ) = ( 2 + t ) \mathbf { i } + 10 t ^ { 2 } \mathbf { j } + 9 t ^ { 3 } \mathbf { k } at the point (2,0,0)( 2,0,0 ) . Find the angle of intersection.

(Short Answer)
4.9/5
(35)

Find the unit tangent vector for the curve given by r(t)=15t5,13t3,t)\mathbf { r } ( t ) = \left\langle \frac { 1 } { 5 } t ^ { 5 } , \frac { 1 } { 3 } t ^ { 3 } , t \right) .

(Multiple Choice)
4.8/5
(39)

Find the scalar tangential and normal components of acceleration of a particle with position vector r(t)=3sinti+3costj+5tk\mathbf { r } ( t ) = 3 \sin t \mathbf { i } + 3 \cos t \mathbf { j } + 5 t \mathbf { k }

(Multiple Choice)
4.8/5
(33)

Find the arc length function s(t)s ( t ) for the curve defined by r(t)=e2tcosti+e2tsintj+e2tk\mathbf { r } ( t ) = e ^ { 2 t } \cos t \mathbf { i } + e ^ { 2 t } \sin t \mathbf { j } + e ^ { 2 t } \mathbf { k } for t0t \geq 0 . Then use this result to find a parametrization of CC in terms of ss .

(Essay)
4.7/5
(37)

Find the scalar tangential and normal components of acceleration of a particle with position vector r(t)=et{cos6t,sin6t,0}\mathbf { r } ( t ) = e ^ { t } \{ \cos 6 t , \sin 6 t , 0 \}

(Multiple Choice)
4.8/5
(41)

Find the velocity of a particle with the given position function. r(t)=19e5ti+5e21tj\mathbf { r } ( t ) = 19 e ^ { 5 t } \mathbf { i } + 5 e ^ { - 21 t } \mathbf { j }

(Multiple Choice)
4.7/5
(33)

 Find the curvature of y=x4\text { Find the curvature of } y = x ^ { 4 } \text {. }

(Short Answer)
4.7/5
(29)

Find the speed of a particle with the given position function. r(t)=52ti+e5tje5tk\mathbf { r } ( t ) = 5 \sqrt { 2 } t \mathbf { i } + e ^ { 5 t } \mathbf { j } - e ^ { - 5 t } \mathbf { k }

(Short Answer)
4.8/5
(44)

A mortar shell is fired with a muzzle speed of 325ft/sec325 \mathrm { ft } / \mathrm { sec } . Find the angle of elevation of the if the shell strikes a target located 1500ft1500 \mathrm { ft } away. Round your answer to 2 decimal places. Select the correct answer.

(Multiple Choice)
4.9/5
(35)

 Find the domain of the vector function r(t)=8ti+1t3j\text { Find the domain of the vector function } \mathbf { r } ( t ) = 8 t \mathbf { i } + \frac { 1 } { t - 3 } \mathbf { j } \text {. } Select the correct answer.

(Multiple Choice)
4.8/5
(34)
Showing 81 - 100 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)