Exam 13: Vector Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

What force is required so that a particle of mass mm has the following position function?. r(t)=5t3i+10t2j+7t3kr ( t ) = 5 t ^ { 3 } \mathbf { i } + 10 t ^ { 2 } \mathbf { j } + 7 t ^ { 3 } \mathbf { k }

(Multiple Choice)
4.9/5
(41)

 Find equations of the normal plane to x=t,y=t2,z=t3 at the point (2,4,8)\text { Find equations of the normal plane to } x = t , y = t ^ { 2 } , z = t ^ { 3 } \text { at the point } ( 2,4,8 )

(Short Answer)
4.8/5
(50)

Find the velocity, acceleration, and speed of an object with position function r(t)=4sinti+costj\mathbf { r } ( t ) = 4 \sin t \mathbf { i } + \cos t \mathbf { j } for t=π4t = \frac { \pi } { 4 } . Sketch the path of the object and its velocity and acceleration vectors.

(Essay)
4.9/5
(42)

 Find the curvature of the curve r(t)=3sin4ti+3cos4tj+3tk\text { Find the curvature of the curve } r ( t ) = 3 \sin 4 t \mathbf { i } + 3 \cos 4 t \mathbf { j } + 3 t \mathbf { k } \text {. }

(Short Answer)
4.8/5
(35)

Find the length of the curve r(t)=2titj+tk,2t1\mathbf { r } ( t ) = - 2 t \mathbf { i } - t \mathbf { j } + t \mathbf { k } , - 2 \leq t \leq 1 .

(Multiple Choice)
4.8/5
(36)

A ball is thrown at an angle of 4545 ^ { \circ } to the ground. If the ball lands 30 m30 \mathrm {~m} away, what was the initial speed of the ball? Let g=9.82 m/sg = 9.82 \mathrm {~m} / \mathrm { s } .

(Multiple Choice)
4.9/5
(37)

Find the limit. limt0+(8cost,24sint,5tlnt)\lim _ { t \rightarrow 0 ^ { + } } ( 8 \cos t , 24 \sin t , 5 t \ln t )

(Multiple Choice)
5.0/5
(41)

Find the scalar tangential and normal components of acceleration of a particle with position vector r(t)=5ti+(t2+5)j\mathbf { r } ( t ) = 5 t \mathbf { i } + \left( t ^ { 2 } + 5 \right) \mathbf { j } .

(Short Answer)
4.8/5
(40)

Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point. Select the correct answer. x=t11,y=t5,z=t6;(1,1,1)x = t ^ { 11 } , y = t ^ { 5 } , z = t ^ { 6 } ; ( 1,1,1 )

(Multiple Choice)
4.8/5
(30)

Sketch the curve of the vector function r(t)=3ti+(2t+3)j,1t2\mathbf { r } ( t ) = 3 t \mathbf { i } + ( 2 t + 3 ) \mathbf { j } , - 1 \leq t \leq 2 , and indicate the orientation of the curve.

(Essay)
4.8/5
(30)

At what point on the curve x=t3,y=9t,z=t4x = t ^ { 3 } , y = 9 t , z = t ^ { 4 } is the normal plane parallel to the plane 3x+9y4z=8?3 x + 9 y - 4 z = 8 ? Select the correct answer.

(Multiple Choice)
4.8/5
(36)

Find the speed of a particle with the given position function. r(t)=42ti+e4tje4tk\mathbf { r } ( t ) = 4 \sqrt { 2 } t \mathbf { i } + e ^ { 4 t } \mathbf { j } - e ^ { - 4 t } \mathbf { k }

(Multiple Choice)
4.9/5
(44)

Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point. Select the correct answer. x=cost,y=2e6t,z=2e6t;(1,2,2)x = \cos t , y = 2 e ^ { 6 t } , z = 2 e ^ { - 6 t } ; ( 1,2,2 )

(Multiple Choice)
4.8/5
(36)

Find the scalar tangential and normal components of acceleration of a particle with position vector r(t)=3sinti+3costj+5tk\mathbf { r } ( t ) = 3 \sin t \mathbf { i } + 3 \cos t \mathbf { j } + 5 t \mathbf { k } Select the correct answer.

(Multiple Choice)
4.8/5
(38)

Find the speed of a particle with the given position function. r(t)=ti+5t2j+3t6kr ( t ) = t \mathbf { i } + 5 t ^ { 2 } \mathbf { j } + 3 t ^ { 6 } \mathbf { k }

(Short Answer)
4.9/5
(37)

Find a vector function that represents the curve of intersection of the two surfaces: the top half of the ellipsoid x2+5y2+5z2=25x ^ { 2 } + 5 y ^ { 2 } + 5 z ^ { 2 } = 25 and the parabolic cylinder y=x2y = x ^ { 2 } .

(Multiple Choice)
4.7/5
(41)

Find the unit tangent vector T(t)\mathbf { T } ( t ) for r(t)=6ti+6tj+7tk\mathbf { r } ( t ) = 6 t \mathbf { i } + 6 t \mathbf { j } + 7 t \mathbf { k } at t=2t = 2 . Select the correct answer.

(Multiple Choice)
4.9/5
(39)

Find the following limit. limt(arctant,e7t,ln4tt)\lim _ { t \rightarrow \infty } \left( \arctan t , \mathrm { e } ^ { - 7 t } , \frac { \ln 4 t } { t } \right)

(Short Answer)
4.8/5
(33)

Find the speed of a particle with the given position function. r(t)=ti+5t2j+3t6k\mathrm { r } ( t ) = t \mathbf { i } + 5 t ^ { 2 } \mathbf { j } + 3 t ^ { 6 } \mathbf { k }

(Short Answer)
4.9/5
(35)

Find the domain of the vector function r(t)=9t,1t3,lnt)\mathbf { r } ( t ) = \left\langle 9 \sqrt { t } , \frac { 1 } { t - 3 } , \ln t \right) . Select the correct answer.

(Multiple Choice)
4.8/5
(37)
Showing 121 - 140 of 159
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)