Exam 14: Vector Analysis

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the flux of F\vec { F } through the surface SS in the positive z direction. Let S={(u+v,3u+2v,6v):0u1 and 1v3}S = \{ ( u + v , 3 u + 2 v , 6 v ) : 0 \leq u \leq 1 \text { and } 1 \leq v \leq 3 \} and F(x,y,z)=z,x,y\vec { F } ( x , y , z ) = \langle z , x , y \rangle

(Multiple Choice)
4.9/5
(22)

Find the flux of F\vec { F } through the surface SS in the positive z direction. Let S={(v,u,u):0u1 and 0v1}S = \{ ( v , u , u ) : 0 \leq u \leq 1 \text { and } 0 \leq v \leq 1 \} and F(x,y,z)=x,y,zy\vec { F } ( x , y , z ) = \langle x , y , z - y \rangle

(Essay)
4.7/5
(40)

Find DivF\operatorname { Div } \vec { F } for F(x,y,z)=2x,yz,z2\vec { F } ( x , y , z ) = \left\langle 2 x , y z , z ^ { 2 } \right\rangle

(Essay)
5.0/5
(37)

Find DivF\operatorname { Div } \vec { F } for F(x,y,z)=yx2,exy,z\vec { F } ( x , y , z ) = \left\langle y x ^ { 2 } , e ^ { x y } , z \right\rangle

(Essay)
4.9/5
(31)

Find the curl of F(x,y,z)=x,y2,z3\vec { F } ( x , y , z ) = \left\langle x , y ^ { 2 } , z ^ { 3 } \right\rangle

(Essay)
4.8/5
(36)

Find DivF\operatorname { Div } \vec { F } for F(x,y,z)=xyz,xyz,xyz\vec { F } ( x , y , z ) = \langle x y z , x y z , x y z \rangle

(Essay)
4.8/5
(35)

Evaluate the line integral of the function over the given curve: f(x,y)=x3f ( x , y ) = x ^ { 3 } and the curve C is given by y=x3,0x2y = x ^ { 3 } , 0 \leq x \leq 2

(Essay)
4.9/5
(39)

Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } of the function over the given curve: F(x,y)=x,y,z\vec { F } ( x , y ) = \langle x , y , z \rangle and the curve C is given by r(t)=cos(t),sin(t),t,0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) , t \rangle , 0 \leq t \leq \frac { \pi } { 2 }

(Essay)
4.9/5
(39)

Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } of the function over the given curve: F(x,y)=x,x\vec { F } ( x , y ) = \langle x , x \rangle and the curve C is given by y=x3,0x2y = x ^ { 3 } , 0 \leq x \leq 2

(Short Answer)
4.9/5
(38)

Find DivF\operatorname { Div } \vec { F } for F(x,y,z)=cos(xy),sin(y),ez\vec { F } ( x , y , z ) = \left\langle \cos ( x y ) , \sin ( y ) , e ^ { z } \right\rangle

(Multiple Choice)
4.7/5
(36)

Find the divergence of F(x,y)=x2y,exy\vec { F } ( x , y ) = \left\langle x ^ { 2 } y , e ^ { x y } \right\rangle

(Essay)
4.9/5
(43)

Evaluate the line integral of the function over the given curve: f(x,y,z)=xeyf ( x , y , z ) = x e ^ { y } and the curve C is given by r(t)=cos(t),sin(t),t,0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) , t \rangle , 0 \leq t \leq \frac { \pi } { 2 }

(Essay)
4.9/5
(31)

Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } of the function over the given curve: F(x,y)=1,x,1\vec { F } ( x , y ) = \langle 1 , x , 1 \rangle and the curve C is given by r(t)=cos(t),sin(t),t,0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) , t \rangle , 0 \leq t \leq \frac { \pi } { 2 }

(Multiple Choice)
4.8/5
(31)

Compute the integral using Green's theorem. CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is the square with vertices (1, 1), (0, 1), (0, 0), and (1, 0) traversed counterclockwise and F(x,y)=x2y,x2y2\vec { F } ( x , y ) = \left\langle x ^ { 2 } y , x ^ { 2 } y ^ { 2 } \right\rangle

(Short Answer)
5.0/5
(34)

Find DivF\operatorname { Div } \vec { F } for F(x,y,z)=ln(xy),cos(y),z2\vec { F } ( x , y , z ) = \left\langle \ln ( x y ) , \cos ( y ) , z ^ { 2 } \right\rangle

(Essay)
4.7/5
(37)

Find the area of the surface SS Let S={(2u+v,uv,u+3v):0u2 and 0v1}S = \{ ( 2 u + v , u - v , u + 3 v ) : 0 \leq u \leq 2 \text { and } 0 \leq v \leq 1 \}

(Essay)
5.0/5
(41)

Evaluate the line integral of the function over the given curve: f(x,y,z)=ezf ( x , y , z ) = e ^ { z } and the curve C is given by r(t)=cos(t),sin(t),t,0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) , t \rangle , 0 \leq t \leq \frac { \pi } { 2 }

(Essay)
4.9/5
(38)

Find the area of the surface SS Let SS be the portion of the plane z=3x+4y+7z = 3 x + 4 y + 7 above the rectangle 0x30 \leq x \leq 3 and 0y40 \leq y \leq 4

(Essay)
5.0/5
(37)

Compute the integral using Green's theorem. CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is the unit circle traversed counterclockwise and F(x,y)=y3,x3\vec { F } ( x , y ) = \left\langle y ^ { 3 } , - x ^ { 3 } \right\rangle

(Essay)
4.8/5
(39)

Use Stokes' theorem to evaluate CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is in the plane z=6xyz = 6 - x - y lying above the square with vertices (0, 0), (1, 0), (1, 1), and (0, 1) with the normal vector in the positive z direction where F(x,y,z)=xz,yx,xyz\vec { F } ( x , y , z ) = \langle x z , y x , x y z \rangle

(Essay)
4.8/5
(40)
Showing 41 - 60 of 75
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)