Exam 14: Vector Analysis

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Compute the integral using Green's theorem. CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is the triangle with vertices (1, 1), (0, 0), and (1, 0) traversed counterclockwise and F(x,y)=x2y,x3y3\vec { F } ( x , y ) = \left\langle x ^ { 2 } y , x ^ { 3 } y ^ { 3 } \right\rangle

(Multiple Choice)
4.7/5
(34)

Find a potential for the given vector field: F(x,y)=ycos(xy)esin(xy),xcos(xy)esin(xy)\vec { F } ( x , y ) = \left\langle y \cos ( x y ) e ^ { \sin ( x y ) } , x \cos ( x y ) e ^ { \sin ( x y ) } \right\rangle

(Essay)
4.7/5
(27)

Integrate the function ff over the surface SS Let SS be the portion of the plane z=x+9y2z = x + 9 y - 2 above the rectangle 1x31 \leq x \leq 3 and 2x42 \leq x \leq 4 and f(x,y)=x2f ( x , y ) = x ^ { 2 }

(Multiple Choice)
4.8/5
(38)

Find a potential for the given vector field: F(x,y)=2xy,x2+1\vec { F } ( x , y ) = \left\langle 2 x y , x ^ { 2 } + 1 \right\rangle

(Essay)
4.8/5
(32)

Find a potential for the given vector field: F(x,y)=eysin(xey),xeysin(xey)\vec { F } ( x , y ) = \left\langle - e ^ { y } \sin \left( x e ^ { y } \right) , - x e ^ { y } \sin \left( x e ^ { y } \right) \right\rangle

(Essay)
4.8/5
(22)

Use Stokes' theorem to evaluate CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is in the plane z=72xyz = 7 - 2 x - y lying above the square with vertices (0, 0), (2, 0), (2, 2), and (0, 2) with the normal vector in the positive z direction where F(x,y,z)=z,y2,3x\vec { F } ( x , y , z ) = \left\langle z , y ^ { 2 } , 3 x \right\rangle

(Multiple Choice)
4.9/5
(33)

Find a potential for the given vector field: F(x,y)=2x,2y\vec { F } ( x , y ) = \left\langle \frac { 2 } { x } , \frac { 2 } { y } \right\rangle

(Essay)
4.8/5
(39)

Find a potential for the given vector field: F(x,y,z)=yz1,xz1,xyz2\vec { F } ( x , y , z ) = \left\langle y z ^ { - 1 } , x z ^ { - 1 } , - x y z ^ { - 2 } \right\rangle

(Essay)
4.9/5
(27)

Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } of the function over the given curve: F(x,y)=x,x,x\vec { F } ( x , y ) = \langle x , x , x \rangle and the curve C is given by r(t)=cos(t),sin(t),t,0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) , t \rangle , 0 \leq t \leq \frac { \pi } { 2 }

(Essay)
4.8/5
(35)

Use Stokes' theorem to evaluate CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is the boundary curve of the surface S={(uv,u,uv):0u1 and 0v1}S = \{ ( u v , u , u - v ) : 0 \leq u \leq 1 \text { and } 0 \leq v \leq 1 \} with the normal vector in the positive z direction where F(x,y,z)=z,y2,3x\vec { F } ( x , y , z ) = \left\langle z , y ^ { 2 } , 3 x \right\rangle

(Multiple Choice)
4.8/5
(27)

Use Stokes' theorem to evaluate CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is the boundary curve of the surface S={(uv,u,uv):0u1 and 0v1}S = \{ ( u v , u , u - v ) : 0 \leq u \leq 1 \text { and } 0 \leq v \leq 1 \} with the normal vector in the positive z direction where F(x,y,z)=z,y,2x\vec { F } ( x , y , z ) = \langle z , y , 2 x \rangle

(Essay)
4.7/5
(37)

Is the given vector field conservative? F(x,y)=xy1,xyln(x)\vec { F } ( x , y ) = \left\langle x ^ { y - 1 } , x ^ { y } \ln ( x ) \right\rangle

(True/False)
4.8/5
(33)

Find the area of the surface SS Let SS be the portion of the plane z=2x+y+3z = 2 x + y + 3 above the rectangle 0x20 \leq x \leq 2 and 1y61 \leq y \leq 6

(Essay)
4.8/5
(47)

Evaluate the line integral of the function over the given curve: f(x,y)=xf ( x , y ) = x and the curve C is given by y=x2,0x2y = x ^ { 2 } , 0 \leq x \leq 2

(Multiple Choice)
4.7/5
(34)

Find a potential for the given vector field: F(x,y,z)=1x,1y,cot(z)\vec { F } ( x , y , z ) = \left\langle \frac { 1 } { x } , \frac { 1 } { y } , \cot ( z ) \right\rangle

(Multiple Choice)
4.8/5
(36)
Showing 61 - 75 of 75
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)