Exam 14: Vector Analysis

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Integrate the function ff over the surface SS Let SS be the portion of the plane z=2x+y+3z = 2 x + y + 3 above the rectangle 0x20 \leq x \leq 2 and 1x61 \leq x \leq 6 and f(x,y)=xf ( x , y ) = x

(Essay)
4.9/5
(32)

Use Stokes' theorem to evaluate CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is in the plane z=6xyz = 6 - x - y lying above the square with vertices (0, 0), (1, 0), (1, 1), and (0, 1) with the normal vector in the positive z direction where F(x,y,z)=z,y,2x\vec { F } ( x , y , z ) = \langle z , y , 2 x \rangle

(Essay)
4.8/5
(35)

Compute SFndS\iint _ { S } \vec { F } \cdot \vec { n } d S where S is the unit sphere, n\vec { n } is the unit outward normal, and F(x,y,z)=x2,y,4\vec { F } ( x , y , z ) = \left\langle x ^ { 2 } , y , 4 \right\rangle

(Essay)
4.9/5
(30)

Find a potential for the given vector field: F(x,y)=2xy1,x2y2\vec { F } ( x , y ) = \left\langle 2 x y ^ { - 1 } , - x ^ { 2 } y ^ { - 2 } \right\rangle

(Multiple Choice)
4.8/5
(28)

Find a potential for the given vector field: F(x,y,z)=yzexyz,xzexyz,xyexyz\vec { F } ( x , y , z ) = \left\langle y z e ^ { x y z } , x z e ^ { x y z } , x y e ^ { x y z } \right\rangle

(Essay)
4.8/5
(32)

Find the curl of F(x,y,z)=eyz,exz,exy\vec { F } ( x , y , z ) = \left\langle e ^ { y z } , e ^ { x z } , e ^ { x y } \right\rangle

(Multiple Choice)
4.9/5
(35)

Use Stokes' theorem to evaluate CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is in the plane z=6xyz = 6 - x - y lying above the square with vertices (0, 0), (1, 0), (1, 1), and (0, 1) with the normal vector in the positive z direction where F(x,y,z)=z,y2,3x\vec { F } ( x , y , z ) = \left\langle z , y ^ { 2 } , 3 x \right\rangle

(Multiple Choice)
4.9/5
(36)

Find the divergence of F(x,y)=x,xy\vec { F } ( x , y ) = \langle x , x y \rangle

(Essay)
4.9/5
(35)

Integrate the function ff over the surface SS Let S={(v,u,u):0u1 and 0v1}S = \{ ( v , u , u ) : 0 \leq u \leq 1 \text { and } 0 \leq v \leq 1 \} and f(x,y)=yf ( x , y ) = y

(Essay)
4.9/5
(34)

Find the divergence of F(x,y,z)=xy,yz,xz\vec { F } ( x , y , z ) = \langle x y , y z , x z \rangle

(Essay)
4.8/5
(37)

Find the area of the surface SS Let SS be the portion of the plane z=x+9y2z = x + 9 y - 2 above the rectangle 1x31 \leq x \leq 3 and 2y42 \leq y \leq 4

(Multiple Choice)
5.0/5
(29)

Evaluate the line integral of the function over the given curve: f(x,y)=yf ( x , y ) = y and the curve C is given by y=x3,0x2y = x ^ { 3 } , 0 \leq x \leq 2

(Essay)
4.7/5
(36)

Compute SFndS\iint _ { S } \vec { F } \cdot \vec { n } d S where S is the unit sphere, n\vec { n } is the unit outward normal, and F(x,y,z)=x3,y3,z3\vec { F } ( x , y , z ) = \left\langle x ^ { 3 } , y ^ { 3 } , z ^ { 3 } \right\rangle

(Essay)
4.7/5
(33)

Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } of the function over the given curve: F(x,y)=x,y\vec { F } ( x , y ) = \langle x , y \rangle and the curve C is given by r(t)=cos(t),sin(t),0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) \rangle , 0 \leq t \leq \frac { \pi } { 2 }

(Multiple Choice)
4.8/5
(36)

Use Stokes' theorem to evaluate CFdr\int _ { C } \vec { F } \cdot d \vec { r } , where C is in the plane z=72xyz = 7 - 2 x - y lying above the unit disk with the normal vector in the positive z direction where F(x,y,z)=z,y,2x\vec { F } ( x , y , z ) = \langle z , y , 2 x \rangle

(Essay)
4.9/5
(39)

Integrate the function ff over the surface SS Let SS be the portion of the plane z=3x+4y+7z = 3 x + 4 y + 7 above the rectangle 0x30 \leq x \leq 3 and 0x40 \leq x \leq 4 and f(x,y)=xyf ( x , y ) = x y

(Essay)
4.8/5
(42)

Find DivF\operatorname { Div } \vec { F } for F(x,y,z)=x2ey,y2ex,y\vec { F } ( x , y , z ) = \left\langle x ^ { 2 } e ^ { y } , y ^ { 2 } e ^ { x } , y \right\rangle

(Multiple Choice)
4.9/5
(31)

Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } of the function over the given curve: F(x,y)=y,y\vec { F } ( x , y ) = \langle y , y \rangle and the curve C is given by r(t)=cos(t),sin(t),0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) \rangle , 0 \leq t \leq \frac { \pi } { 2 }

(Essay)
4.8/5
(39)

Find CFdr\int _ { C } \vec { F } \cdot d \vec { r } of the function over the given curve: F(x,y)=x,x\vec { F } ( x , y ) = \langle x , x \rangle and the curve C is given by r(t)=cos(t),sin(t),0tπ2\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) \rangle , 0 \leq t \leq \frac { \pi } { 2 }

(Essay)
4.8/5
(36)

Find the flux of F\vec { F } through the surface SS in the positive z direction. Let S={(2u+v,uv,u+3v):0u2 and 0v1}S = \{ ( 2 u + v , u - v , u + 3 v ) : 0 \leq u \leq 2 \text { and } 0 \leq v \leq 1 \} and F(x,y,z)=x,y,zy\vec { F } ( x , y , z ) = \langle x , y , z - y \rangle

(Essay)
4.8/5
(26)
Showing 21 - 40 of 75
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)