Exam 11: Vector Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the arc length of the curve defined by r(t)=1+cos(3t),1+sin(3t)\vec { r } ( t ) = \langle 1 + \cos ( 3 t ) , 1 + \sin ( 3 t ) \rangle over [4,7][ 4,7 ]

(Short Answer)
4.9/5
(35)

Find an equation for the line tangent to the given curve at the specified point. r(t)=et,cos(t),t,(1,1,0)\vec { r } ( t ) = \left\langle e ^ { t } , \cos ( t ) , t \right\rangle , ( 1,1,0 )

(Essay)
4.8/5
(35)

Find the unit tangent for r(t)=cos(3t),sin(3t),et\vec { r } ( t ) = \left\langle \cos ( 3 t ) , \sin ( 3 t ) , e ^ { t } \right\rangle

(Multiple Choice)
4.9/5
(45)

Find the tangential and normal components for the position function r(t)=t,et,t2\vec { r } ( t ) = \left\langle t , e ^ { t } , t ^ { 2 } \right\rangle

(Essay)
4.7/5
(40)

Find the acceleration for the given position vector, r(t)=2t,(1+t2)3,t\vec { r } ( t ) = \left\langle 2 t , \left( 1 + t ^ { 2 } \right) ^ { 3 } , t \right\rangle

(Multiple Choice)
4.8/5
(40)

Evaluate and simplify the quantity. t,7t,cos(t)×1,t,t2\langle t , 7 t , \cos ( t ) \rangle \times \left\langle 1 , t , t ^ { 2 } \right\rangle

(Multiple Choice)
4.9/5
(45)

Find the parametric equations for the vector-valued function r(t)=t,2t2,3t3\vec { r } ( t ) = \left\langle t , 2 t ^ { 2 } , 3 t ^ { 3 } \right\rangle

(Essay)
4.9/5
(27)

For r(t)=sin(π2t),cos(π2t),t\vec { r } ( t ) = \left\langle \sin \left( \frac { \pi } { 2 } t \right) , \cos \left( \frac { \pi } { 2 } t \right) , t \right\rangle find the displacement vector as tt goes from t=1t = - 1 to t=1t = 1

(Essay)
4.8/5
(42)

Find the unit tangent for r(t)=t,et\vec { r } ( t ) = \left\langle t , e ^ { t } \right\rangle

(Essay)
4.9/5
(32)

Given the velocity vector v(t)=1t+1,et,t\vec { v } ( t ) = \left\langle \frac { 1 } { t + 1 } , e ^ { t } , t \right\rangle and r(0)=1,0,2\vec { r } ( 0 ) = \langle 1,0,2 \rangle , find r(t)\vec { r } ( t )

(Essay)
4.8/5
(34)

Find the parametric equations for the vector-valued function r(t)=2t,t2\vec { r } ( t ) = \left\langle 2 t , t ^ { 2 } \right\rangle

(Essay)
4.9/5
(34)

Find the principle binormal unit vector for r(t)=sin(t),cos(t),t\vec { r } ( t ) = \langle \sin ( t ) , \cos ( t ) , t \rangle

(Essay)
4.8/5
(30)

Evaluate and simplify the quantity. t,et,cos(t)+4,et,t2\left\langle t , e ^ { t } , \cos ( t ) \right\rangle + \left\langle 4 , e ^ { t } , t ^ { 2 } \right\rangle

(Essay)
4.8/5
(40)

Find the parametric equations for the vector-valued function r(t)=cos(t),t22\vec { r } ( t ) = \left\langle \cos ( t ) , t ^ { 2 } - 2 \right\rangle

(Multiple Choice)
4.9/5
(31)

Find the parametric equations for the vector-valued function r(t)=sin(t),14\vec { r } ( t ) = \langle \sin ( t ) , 14 \rangle

(Essay)
4.9/5
(38)

Give an arc length parameterization of r(t)=et,2et\vec { r } ( t ) = \left\langle e ^ { t } , 2 e ^ { t } \right\rangle

(Essay)
4.8/5
(42)

Find the curvature of the vector valued function: r(t)=sin(t),cos(t),t\vec { r } ( t ) = \langle \sin ( t ) , \cos ( t ) , t \rangle

(Essay)
4.8/5
(35)

Evaluate and simplify the quantity. t<cos(t),et>t < \cos ( t ) , e ^ { t } >

(Essay)
4.9/5
(33)

For r(t)=sin(3t),cos(3t)\vec { r } ( t ) = \langle \sin ( 3 t ) , \cos ( 3 t ) \rangle find the displacement vector as tt goes from t=0t = 0 to t=πt = \pi

(Multiple Choice)
4.9/5
(39)

Find the arc length of the curve defined by r(t)=1+cos(3t),1+sin(3t),2\vec { r } ( t ) = \langle 1 + \cos ( 3 t ) , 1 + \sin ( 3 t ) , 2 \rangle over [1,5][ 1,5 ]

(Short Answer)
4.9/5
(31)
Showing 21 - 40 of 81
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)