Exam 11: Vector Functions

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the arc length of the curve defined by r(t)=1+cos(3t),1+sin(3t),5\vec { r } ( t ) = \langle 1 + \cos ( 3 t ) , 1 + \sin ( 3 t ) , 5 \rangle over [4,7][ 4,7 ]

(Multiple Choice)
4.9/5
(25)

Find the arc length of the curve defined by r(t)=etcos(t),et,etsin(t)\vec { r } ( t ) = \left\langle e ^ { t } \cos ( t ) , e ^ { t } , e ^ { t } \sin ( t ) \right\rangle over [ln(2),ln(5)][ \ln ( 2 ) , \ln ( 5 ) ]

(Essay)
4.8/5
(27)

Evaluate the limit: limx1t21t1,cos(πt),t2\lim _ { x \rightarrow 1 } \left\langle \frac { t ^ { 2 } - 1 } { t - 1 } , \cos ( \pi t ) , t ^ { 2 } \right\rangle

(Essay)
4.7/5
(38)

Find the principle binormal unit vector for r(t)=cos(3t),sin(3t),3\vec { r } ( t ) = \langle \cos ( 3 t ) , \sin ( 3 t ) , 3 \rangle

(Essay)
4.8/5
(45)

Evaluate the integral. <t,cot(t),et>dt\int < t , \cot ( t ) , e ^ { t } > d t

(Multiple Choice)
4.9/5
(34)

Give an arc length parameterization of r(t)=sin(2t),cos(2t)\vec { r } ( t ) = \langle \sin ( 2 t ) , \cos ( 2 t ) \rangle

(Essay)
4.8/5
(45)

Find the unit tangent for r(t)=et,tr ( t ) = \left\langle e ^ { t } , t \right\rangle

(Multiple Choice)
4.8/5
(35)

Give an arc length parameterization of r(t)=1+sin(2t),2+cos(2t),3\vec { r } ( t ) = \langle 1 + \sin ( 2 t ) , 2 + \cos ( 2 t ) , 3 \rangle

(Multiple Choice)
4.8/5
(51)

Evaluate and simplify the quantity. 3<2t,cos(t)>3 < 2 t , \cos ( t ) >

(Essay)
4.7/5
(41)

Find the distance traveled by a particle moving on the curve given by r(t)=sin(π2t),cos(π2t),t\vec { r } ( t ) = \left\langle \sin \left( \frac { \pi } { 2 } t \right) , \cos \left( \frac { \pi } { 2 } t \right) , t \right\rangle as tt goes from t=1t = - 1 to t=1t = 1

(Essay)
4.8/5
(38)

Evaluate and simplify the quantity. cos(t),sin(t),3cos(t),sin(t),t\langle \cos ( t ) , \sin ( t ) , 3 \rangle \cdot \langle \cos ( t ) , \sin ( t ) , t \rangle

(Essay)
4.8/5
(36)

Find the distance traveled by a particle moving on the curve given by r(t)=sin(3t),cos(3t)\vec { r } ( t ) = \langle \sin ( 3 t ) , \cos ( 3 t ) \rangle find the displacement vector as tt goes from t=0t = 0 to t=πt = \pi

(Multiple Choice)
4.9/5
(36)

Given the velocity vector v(t)=t,sin(t),t2\vec { v } ( t ) = \left\langle t , - \sin ( t ) , t ^ { 2 } \right\rangle and r(0)=1,1,1\vec { r } ( 0 ) = \langle 1,1,1 \rangle find r(t)\vec { r } ( t )

(Essay)
4.7/5
(33)

Given the acceleration vector a(t)=2t,cos(t),12t2\vec { a } ( t ) = \left\langle 2 t , \cos ( t ) , 12 t ^ { 2 } \right\rangle and initial velocity and position v(0)=1,2,1\vec { v } ( 0 ) = \langle 1,2,1 \rangle and r(0)=1,1,1\vec { r } ( 0 ) = \langle 1,1,1 \rangle , find r(t)\vec { r } ( t )

(Essay)
4.7/5
(44)

Find the tangential and normal components of acceleration for the position function r(t)=cos(3t),t,sin(3t)\vec { r } ( t ) = \langle \cos ( 3 t ) , t , \sin ( 3 t ) \rangle

(Essay)
4.9/5
(38)

For r(t)=sin(π2t),cos(π2t)\vec { r } ( t ) = \left\langle \sin \left( \frac { \pi } { 2 } t \right) , \cos \left( \frac { \pi } { 2 } t \right) \right\rangle find the displacement vector as tt goes from t=1t = - 1 to t=1t = 1

(Essay)
4.8/5
(36)

Evaluate the limit: limx1t,et\lim _ { x \rightarrow 1 } \left\langle t , e ^ { t } \right\rangle

(Essay)
4.9/5
(38)

Find the principle normal unit vector for r(t)=cos(3t),sin(3t),3\vec { r } ( t ) = \langle \cos ( 3 t ) , \sin ( 3 t ) , 3 \rangle

(Essay)
4.7/5
(39)

Find the curvature of the vector valued function: r(t)=1,t2,t2\vec { r } ( t ) = \left\langle 1 , t ^ { 2 } , t ^ { 2 } \right\rangle

(Essay)
4.7/5
(36)

Find the unit tangent for r(t)=cos(t),sin(t)\vec { r } ( t ) = \langle \cos ( t ) , \sin ( t ) \rangle

(Essay)
4.9/5
(34)
Showing 41 - 60 of 81
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)