Exam 5: Applying Newtons Laws
Exam 1: Units, Physical Quantities, and Vectors107 Questions
Exam 2: Motion Along a Straight Line59 Questions
Exam 3: Motion in Two or Three Dimensions50 Questions
Exam 4: Newtons Laws of Motion44 Questions
Exam 5: Applying Newtons Laws95 Questions
Exam 6: Work and Kinetic Energy54 Questions
Exam 7: Potential Energy and Energy Conservation55 Questions
Exam 8: Momentum, Impulse, and Collisions50 Questions
Exam 9: Rotation of Rigid Bodies26 Questions
Exam 10: Equilibrium and Elasticity50 Questions
Exam 11: Fluid Mechanics50 Questions
Exam 12: Gravitation50 Questions
Exam 13: Periodic Motion50 Questions
Exam 14: Mechanical Waves44 Questions
Exam 15: Sound and Hearing66 Questions
Exam 16: Temperature and Heat63 Questions
Exam 17: Thermal Properties of Matter58 Questions
Exam 18: The First Law of Thermodynamics52 Questions
Exam 19: The Second Law of Thermodynamics50 Questions
Exam 20: Electric Charge and Electric Field58 Questions
Exam 21: Gausss Law41 Questions
Exam 22: Electric Potential55 Questions
Exam 23: Capacitance and Dielectrics52 Questions
Exam 24: Current, Resistance, and Electromotive Force50 Questions
Exam 25: Direct-Current Circuits53 Questions
Exam 26: Magnetic Field and Magnetic Forces36 Questions
Exam 27: Sources of Magnetic Field51 Questions
Exam 28: Electromagnetic Induction39 Questions
Exam 29: Inductance26 Questions
Exam 30: Alternating Current49 Questions
Exam 31: Electromagnetic Waves47 Questions
Exam 32: The Nature and Propagation of Light28 Questions
Exam 33: Geometric Optics81 Questions
Exam 34: Interference33 Questions
Exam 35: Diffraction49 Questions
Exam 36: Relativity51 Questions
Exam 37: Photons: Light Waves Behaving As Particles38 Questions
Exam 38: Particles Behaving As Waves52 Questions
Exam 39: Quantum Mechanics40 Questions
Exam 40: Atomic Structure41 Questions
Exam 41: Molecules and Condensed Matter31 Questions
Exam 42: Nuclear Physics89 Questions
Exam 43: Particle Physics and Cosmology44 Questions
Select questions type
A 150-N box is being pulled horizontally in a wagon accelerating uniformly at 3.00 m/s2. The box does not move relative to the wagon, the coefficient of static friction between the box and the wagon's surface is 0.600, and the coefficient of kinetic friction is 0.400. The friction force on this box is closest to
Free
(Multiple Choice)
4.8/5
(38)
Correct Answer:
D
In the figure, a block of mass M hangs at rest. The rope that is fastened to the wall is horizontal and has a tension off 52 N. The rope that is fastened to the ceiling has a tension of 91 N, and makes an angle θ with the ceiling. What is the angle θ? 

Free
(Multiple Choice)
5.0/5
(31)
Correct Answer:
A
In the figure, a T-bar ski tow pulls a skier up a hill inclined at 10° above horizontal. The skier starts from rest and is pulled by a cable that exerts a tension T at an angle of 30° above the surface of the hill. The mass of the skier is 60 kg and the effective coefficient of kinetic friction between the skis and the snow is 0.100. What is the maximum tension in the cable if the starting acceleration is not to exceed 0.400 g? 

Free
(Multiple Choice)
4.8/5
(35)
Correct Answer:
C
The figure shows two wires that are tied to a 710 g mass that revolves in a horizontal circle at a constant speed of 7.5 m/s. What is the tension in the upper wire? 

(Multiple Choice)
4.8/5
(38)
A 250-kg crate is on a rough ramp, inclined at 30° above the horizontal. The coefficient of kinetic friction between the crate and ramp is 0.22. A horizontal force of 5000 N is applied to the crate, pushing it up the ramp. What is the acceleration of the crate?
(Multiple Choice)
4.8/5
(41)
A ship is being pulled through a harbor at constant velocity by two tugboats as shown in the figure. The lines attached to the two tugboats have the same tension of 200,000 N. Each line makes an angle of 28.0° with the direction the ship is being towed. What is the magnitude of the drag force due to the water on the ship? 

(Multiple Choice)
4.8/5
(30)
A 200 g hockey puck is launched up a metal ramp that is inclined at a 30° angle. The coefficients of static and kinetic friction between the hockey puck and the metal ramp are μs = 0.40 and μk = 0.30, respectively. The puck's initial speed is 63 m/s. What vertical height does the puck reach above its starting point?
(Multiple Choice)
4.8/5
(39)
Suppose a highway curve is properly banked to eliminate friction for a speed of 45 mph. If your tires were bald and you wanted to avoid sliding on the road, you would have to drive
(Multiple Choice)
4.7/5
(33)
Two blocks are connected by a string that goes over an ideal pulley as shown in the figure. Block A has a mass of 3.00 kg and can slide over a rough plane inclined 30.0° to the horizontal. The coefficient of kinetic friction between block A and the plane is 0.400. Block B has a mass of 2.77 kg. What is the acceleration of the blocks? 

(Multiple Choice)
4.8/5
(35)
A block is given a very brief push up a 20.0° frictionless incline to give it an initial speed of 12.0 m/s.
(a) How far along the surface of the plane does the block slide before coming to rest?
(b) How much time does it take to return to its starting position?
(Short Answer)
4.7/5
(44)
A 4.00-kg block rests between the floor and a 3.00-kg block as shown in the figure. The 3.00-kg block is tied to a wall by a horizontal rope. If the coefficient of static friction is 0.800 between each pair of surfaces in contact, what horizontal force F must be applied to the 4.00-kg block to make it move? 

(Multiple Choice)
4.8/5
(32)
Block A of mass 8.0 kg and block X are attached to a rope that passes over a pulley. A 50-N force P is applied horizontally to block A, keeping it in contact with a rough vertical face. The coefficients of static and kinetic friction between the wall and block A are μs = 0.40 and μk = 0.30. The pulley is light and frictionless. In the figure, the mass of block X is adjusted until block A descends at constant velocity of 4.75 cm/s when it is set into motion. What is the mass of block X? 

(Multiple Choice)
4.9/5
(30)
The magnitude of the drag force of air resistance on a certain 20.0-kg object is proportional to its speed. If the object has a terminal speed 80.0 m/s, what is the magnitude of the drag force on the object when it is falling with a speed 30.0 m/s?
(Multiple Choice)
4.8/5
(39)
When a parachutist jumps from an airplane, he eventually reaches a constant speed, called the terminal speed. Once he has reached terminal speed
(Multiple Choice)
5.0/5
(27)
A 200 g hockey puck is launched up a metal ramp that is inclined at a 30° angle. The coefficients of static and kinetic friction between the hockey puck and the metal ramp are μs = 0.40 and μk = 0.30, respectively. The puck's initial speed is 4.9 m/s. What speed does it have when it slides back down to its starting point?
(Multiple Choice)
4.7/5
(34)
An object weighing 4.00 N falls from rest subject to a frictional drag force given by Fdrag = bv2, where v is the speed of the object and b = 3.00 N · s2/m2. What terminal speed will this object approach?
(Multiple Choice)
4.8/5
(33)
A 1.20-kg ball is hanging from the end of a rope. The rope hangs at an angle 25.0° from the vertical when a 15.0 m/s horizontal wind is blowing. If the wind's force on the rope is negligible, what drag force does the wind exert on the ball?
(Multiple Choice)
4.8/5
(42)
A person on a sled coasts down a hill and then goes over a slight rise with speed 2.7 m/s. The top of this rise can be modeled as a circle of radius 4.1 m. The sled and occupant have a combined mass of 110 kg. If the coefficient of kinetic friction between the snow and the sled is 0.10, what friction force is exerted on the sled by the snow as the sled goes over the top of the rise?
(Short Answer)
4.8/5
(32)
Jason takes off from rest across level water on his jet-powered skis. The combined mass of Jason and his skis is 75 kg (the mass of the fuel is negligible). The skis have a thrust of 200 N and a coefficient of kinetic friction on water of 0.10. Unfortunately, the skis run out of fuel after only 48 s. What is Jason's top speed?
(Multiple Choice)
4.7/5
(24)
A system comprised blocks, a light frictionless pulley, and connecting ropes is shown in the figure. The 9.0-kg block is on a perfectly smooth horizontal table. The surfaces of the 12-kg block are rough, with μk = 0.30 between the block and the table. If the 5.0-kg block accelerates downward when it is released, find its acceleration. 

(Multiple Choice)
4.9/5
(31)
Showing 1 - 20 of 95
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)