Exam 14: Mechanical Waves
Exam 1: Units, Physical Quantities, and Vectors107 Questions
Exam 2: Motion Along a Straight Line59 Questions
Exam 3: Motion in Two or Three Dimensions50 Questions
Exam 4: Newtons Laws of Motion44 Questions
Exam 5: Applying Newtons Laws95 Questions
Exam 6: Work and Kinetic Energy54 Questions
Exam 7: Potential Energy and Energy Conservation55 Questions
Exam 8: Momentum, Impulse, and Collisions50 Questions
Exam 9: Rotation of Rigid Bodies26 Questions
Exam 10: Equilibrium and Elasticity50 Questions
Exam 11: Fluid Mechanics50 Questions
Exam 12: Gravitation50 Questions
Exam 13: Periodic Motion50 Questions
Exam 14: Mechanical Waves44 Questions
Exam 15: Sound and Hearing66 Questions
Exam 16: Temperature and Heat63 Questions
Exam 17: Thermal Properties of Matter58 Questions
Exam 18: The First Law of Thermodynamics52 Questions
Exam 19: The Second Law of Thermodynamics50 Questions
Exam 20: Electric Charge and Electric Field58 Questions
Exam 21: Gausss Law41 Questions
Exam 22: Electric Potential55 Questions
Exam 23: Capacitance and Dielectrics52 Questions
Exam 24: Current, Resistance, and Electromotive Force50 Questions
Exam 25: Direct-Current Circuits53 Questions
Exam 26: Magnetic Field and Magnetic Forces36 Questions
Exam 27: Sources of Magnetic Field51 Questions
Exam 28: Electromagnetic Induction39 Questions
Exam 29: Inductance26 Questions
Exam 30: Alternating Current49 Questions
Exam 31: Electromagnetic Waves47 Questions
Exam 32: The Nature and Propagation of Light28 Questions
Exam 33: Geometric Optics81 Questions
Exam 34: Interference33 Questions
Exam 35: Diffraction49 Questions
Exam 36: Relativity51 Questions
Exam 37: Photons: Light Waves Behaving As Particles38 Questions
Exam 38: Particles Behaving As Waves52 Questions
Exam 39: Quantum Mechanics40 Questions
Exam 40: Atomic Structure41 Questions
Exam 41: Molecules and Condensed Matter31 Questions
Exam 42: Nuclear Physics89 Questions
Exam 43: Particle Physics and Cosmology44 Questions
Select questions type
Observer A is 3.0 m from a tiny light bulb and observer B is 12.0 m from the same bulb. Assume that the light spreads out uniformly and undergoes no significant reflections or absorption. If observer B sees a light of intensity I, the light intensity that A sees is
Free
(Multiple Choice)
4.8/5
(33)
Correct Answer:
C
A wave pulse traveling to the right along a thin cord reaches a discontinuity where the rope becomes thicker and heavier. What is the orientation of the reflected and transmitted pulses?
Free
(Multiple Choice)
4.9/5
(36)
Correct Answer:
C
A guitar string 0.650 m long has a tension of 61.0 N and a mass per unit length of 3.00 g/m.
(a) What is the speed of waves on the string when it is plucked?
(b) What is the string's fundamental frequency of vibration when plucked?
Free
(Short Answer)
4.8/5
(32)
Correct Answer:
(a) 143 m/s
(b) 110 Hz
Four traveling waves are described by the following equations, where all quantities are measured in SI units and y represents the displacement.
I: y = 0.12 cos(3x - 21t)
II: y = 0.15 sin(6x + 42t)
III: y = 0.13 cos(6x + 21t)
IV: y = -0.27 sin(3x - 42t)
Which of these waves have the same period?
(Multiple Choice)
4.9/5
(35)
You are generating traveling waves on a stretched string by wiggling one end. If you suddenly begin to wiggle more rapidly without appreciably affecting the tension, you will cause the waves to move down the string
(Multiple Choice)
4.8/5
(33)
A tube open at one end and closed at the other end produces sound having a fundamental frequency of 350 Hz. If you now open the closed end, the fundamental frequency becomes
(Multiple Choice)
4.8/5
(34)
A platinum wire that is 1.20 m long has a radius of 0.500 mm and is fixed at both ends. In its third harmonic it vibrates at 512 Hz. The density of platinum is 21.4 × 103 kg/m3. What is the tension in the wire?
(Multiple Choice)
4.7/5
(44)
Waves travel along a 100-m length of string which has a mass of 55 g and is held taut with a tension of 75 N. What is the speed of the waves?
(Multiple Choice)
4.8/5
(32)
Ocean tides are waves that have a period of 12 hours, an amplitude (in some places) of 1.50 m, and a speed of 750 km/hr. What is the distance between adjacent crests of these waves?
(Multiple Choice)
4.8/5
(39)
A thin taut string is fixed at both ends and stretched along the horizontal x-axis with its left end at x = 0. It is vibrating in its third OVERTONE, and the equation for the vertical displacement of any point on the string is y(x,t) = (1.22 cm) sin[(14.4 m-1)x] cos[(166 rad/s)t].
(a) What are the frequency and wavelength of the fundamental mode of this string?
(b) How long is the string?
(c) How fast do waves travel on this string?
(Short Answer)
4.8/5
(39)
A tiny vibrating source sends waves uniformly in all directions. An area of 3.25 cm2 on a sphere of radius 2.50 m centered on the source receives energy at a rate of 4.20 J/s.
(a) What is the intensity of the waves at 2.50 m from the source and at 10.0 m from the source?
(b) At what rate is energy leaving the vibrating source of the waves?
(Short Answer)
4.8/5
(31)
Find the speed of an ocean wave whose vertical displacement y as a function of time t is given by y(x,t) = 3.7 cos(2.2x - 5.6t), where all quantities are in SI units.
(Multiple Choice)
4.8/5
(40)
The density of aluminum is 2700 kg/m3. If transverse waves propagate at 34 m/s in a 4.6-mm diameter aluminum wire, what is the tension on the wire?
(Multiple Choice)
4.8/5
(36)
Two violinists are trying to tune their instruments in an orchestra. One is producing the desired frequency of 440.0 Hz. The other is producing a frequency of 448.4 Hz. By what percentage should the out-of-tune musician change the tension in his string to bring his instrument into tune at 440.0 Hz?
(Multiple Choice)
4.8/5
(42)
A 2.00-m long piano wire with a mass per unit length of 12.0 g/m is under a tension of 8.00 kN. What is the frequency of the fundamental mode of vibration of this wire?
(Multiple Choice)
4.7/5
(34)
A heavy stone of mass m is hung from the ceiling by a thin 8.25-g wire that is 65.0 cm long. When you gently pluck the upper end of the wire, a pulse travels down the wire and returns 7.84 ms later, having reflected off the lower end. The stone is heavy enough to prevent the lower end of the wire from moving. What is the mass m of the stone?
(Multiple Choice)
4.9/5
(32)
A guitar string is fixed at both ends. If you tighten it to increase its tension
(Multiple Choice)
4.9/5
(25)
The figure shows the displacement y of a traveling wave at a given position as a function of time and the displacement of the same wave at a given time as a function of position. Determine the wavelength of the wave. 

(Multiple Choice)
4.7/5
(36)
A 1.0-g string that is 0.64 m long is fixed at both ends and is under tension. This string produces a 100-Hz tone when it vibrates in the third harmonic. The speed of sound in air is 344 m/s. The tension in the string, in is closest to
(Multiple Choice)
4.9/5
(30)
Showing 1 - 20 of 44
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)