Exam 33: Geometric Optics
Exam 1: Units, Physical Quantities, and Vectors107 Questions
Exam 2: Motion Along a Straight Line59 Questions
Exam 3: Motion in Two or Three Dimensions50 Questions
Exam 4: Newtons Laws of Motion44 Questions
Exam 5: Applying Newtons Laws95 Questions
Exam 6: Work and Kinetic Energy54 Questions
Exam 7: Potential Energy and Energy Conservation55 Questions
Exam 8: Momentum, Impulse, and Collisions50 Questions
Exam 9: Rotation of Rigid Bodies26 Questions
Exam 10: Equilibrium and Elasticity50 Questions
Exam 11: Fluid Mechanics50 Questions
Exam 12: Gravitation50 Questions
Exam 13: Periodic Motion50 Questions
Exam 14: Mechanical Waves44 Questions
Exam 15: Sound and Hearing66 Questions
Exam 16: Temperature and Heat63 Questions
Exam 17: Thermal Properties of Matter58 Questions
Exam 18: The First Law of Thermodynamics52 Questions
Exam 19: The Second Law of Thermodynamics50 Questions
Exam 20: Electric Charge and Electric Field58 Questions
Exam 21: Gausss Law41 Questions
Exam 22: Electric Potential55 Questions
Exam 23: Capacitance and Dielectrics52 Questions
Exam 24: Current, Resistance, and Electromotive Force50 Questions
Exam 25: Direct-Current Circuits53 Questions
Exam 26: Magnetic Field and Magnetic Forces36 Questions
Exam 27: Sources of Magnetic Field51 Questions
Exam 28: Electromagnetic Induction39 Questions
Exam 29: Inductance26 Questions
Exam 30: Alternating Current49 Questions
Exam 31: Electromagnetic Waves47 Questions
Exam 32: The Nature and Propagation of Light28 Questions
Exam 33: Geometric Optics81 Questions
Exam 34: Interference33 Questions
Exam 35: Diffraction49 Questions
Exam 36: Relativity51 Questions
Exam 37: Photons: Light Waves Behaving As Particles38 Questions
Exam 38: Particles Behaving As Waves52 Questions
Exam 39: Quantum Mechanics40 Questions
Exam 40: Atomic Structure41 Questions
Exam 41: Molecules and Condensed Matter31 Questions
Exam 42: Nuclear Physics89 Questions
Exam 43: Particle Physics and Cosmology44 Questions
Select questions type
In the figure, the image is viewed on a screen and is 13.5 mm tall. What is the focal length of the lens? 

Free
(Multiple Choice)
4.7/5
(36)
Correct Answer:
C
The distance between the object and the eyepiece of a compound microscope is 18.0 cm. The focal length of its objective lens is 0.80 cm and the eyepiece has a focal length of 2.3 cm. The near-point distance of the person using the microscope is 25.0 cm. What is the total overall magnification of the microscope?
Free
(Multiple Choice)
4.8/5
(27)
Correct Answer:
C
The angular magnification of a refracting telescope is 40 x. When the object and final image are both at infinity, the distance between the eyepiece and the objective is 143.5 cm. The telescope is used to view a distant radio tower. The real image of the tower, formed by the objective, is 6.0 mm in height. The focal point of the eyepiece is positioned at the real image. What is the angle subtended by the final image of the tower.
Free
(Multiple Choice)
4.9/5
(36)
Correct Answer:
B
A simple refracting telescope provides large magnification by employing
(Multiple Choice)
4.9/5
(27)
An object 1.25 cm tall is placed 100 cm in front of a convex lens with a focal length of magnitude 50 cm. A concave lens with a focal length of magnitude 20 cm is placed 90 cm beyond the first lens. Where is the final image located?
(Multiple Choice)
4.8/5
(40)
An object is placed 100 cm in front of a diverging lens with a focal length of magnitude 25 cm. A converging lens having a focal length of magnitude 33.33 cm is placed 30 cm past the first lens. Where is the final image formed?
(Multiple Choice)
4.8/5
(41)
The objective and the eyepiece of a microscope have focal lengths of 4.00 mm and 25.0 mm, respectively. The objective produces a real image 30 times the size of the object. The final image is viewed at infinity, and the near point of the microscope user is at 25.0 cm. What is the distance between the object and the focal point of the objective?
(Multiple Choice)
4.9/5
(31)
The focal lengths of the objective and the eyepiece of a microscope are 0.50 cm and 2.0 cm, respectively, and their separation adjusted for minimum eyestrain (with the final image at the viewer's far point) is 6.0 cm. The near point of the person using the microscope is 25 cm and the far point is infinity.
(a) If the microscope is focused on a small object, what is the distance between the object and the objective lens?
(b) If the microscope is focused on a small object, what is its final magnification?
(Short Answer)
5.0/5
(37)
A nearsighted physicist cannot see things clearly beyond 90 cm from her eyes. What is the power of the contact lenses that will enable her to see very distant objects clearly?
(Multiple Choice)
4.9/5
(38)
What power contact lens must be used to correct the vision of a nearsighted person whose far point is 40 cm?
(Multiple Choice)
4.9/5
(35)
A singer is farsighted and cannot see objects clearly that are closer than 80.0 cm from his unaided eye. What is the refractive power of the contact lenses that will move his near point to a distance of 25.0 cm from his eye?
(Multiple Choice)
4.9/5
(38)
A camera lens has a focal length of 50.0 mm and an aperture setting of f/4.00. What is the aperture diameter of this lens?
(Multiple Choice)
4.8/5
(31)
In the figure, the radius of curvature of the curved part of the lens is 24.0 cm, and the refractive index of the lens material is 1.750. What is the focal length of the lens? 

(Multiple Choice)
4.8/5
(36)
Which statements are true about a VIRTUAL image? (There may be more than one correct choice.)
(Multiple Choice)
4.8/5
(35)
A goldfish bowl is spherical, 8.0 cm in radius. A goldfish is swimming 3.0 cm from the wall of the bowl. Where does the fish appear to be to an observer outside? The index of refraction of water is 1.33. Neglect the effect of the glass wall of the bowl.
(Multiple Choice)
4.9/5
(33)
A 4.0-cm tall object is placed 60 cm away from a converging lens of focal length 30 cm. What are the nature and location of the image? The image is
(Multiple Choice)
4.8/5
(37)
A person having a near point of 25 cm and a far point at infinity uses a converging lens of focal length 5.0 cm as a magnifying glass. What is the magnification if the person's eye is relaxed (with the image at his far point)?
(Short Answer)
4.8/5
(29)
An object is placed 100 cm in front of a lens of focal length 20 cm. A second lens is placed 35 cm beyond the first, this second lens having a focal length of 8.0 cm. If the height of the object is 6.0 cm, what is the height of the final image?
(Multiple Choice)
4.7/5
(40)
The objective and the eyepiece of a refracting astronomical telescope have focal lengths of 320 cm and 4.0 cm, respectively. The telescope is used to view Neptune and the final image is set at infinity. The diameter of Neptune is 4.96 × 107 m and the distance from the earth at the time of observation is 4.4 × 1012 m. What is the angle (in mrad) subtended by the final telescopic image of Neptune?
(Multiple Choice)
4.9/5
(35)
A thin converging lens is found to form an image of a distant building 24 cm from the lens. If an insect is now placed 16 cm from this lens, how far FROM THE INSECT will its image be formed?
(Multiple Choice)
4.9/5
(29)
Showing 1 - 20 of 81
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)