Exam 6: Work and Kinetic Energy

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

A person pushes horizontally on a heavy box and slides it across the level floor at constant velocity. The person pushes with a 60.0 N force for the first 6.88 m, at which time he begins to tire. The force he exerts then starts to decrease linearly from 60.0 N to 0.00 N across the remaining 6.88 m. How much total work did the person do on the box?

Free
(Multiple Choice)
4.9/5
(32)
Correct Answer:
Verified

A

If electricity costs 6.00¢/kWh (kilowatt-hour), how much would it cost you to run a 120 W stereo system 4.0 hours per day for 4.0 weeks?

Free
(Multiple Choice)
4.8/5
(31)
Correct Answer:
Verified

A

Calculate the minimum average power output necessary for a 55.8 kg person to run up a 12.0 m long hillside, which is inclined at 25.0° above the horizontal, in 3.00 s. You can neglect the person's kinetic energy. Express your answer in horsepower. (1 hp = 746 W)

Free
(Multiple Choice)
4.8/5
(30)
Correct Answer:
Verified

A

A stock person at the local grocery store has a job consisting of the following five segments: (1) picking up boxes of tomatoes from the stockroom floor (2) accelerating to a comfortable speed (3) carrying the boxes to the tomato display at constant speed (4) decelerating to a stop (5) lowering the boxes slowly to the floor. During which of the five segments of the job does the stock person do positive work on the boxes?

(Multiple Choice)
4.9/5
(26)

A 3.00-kg ball swings rapidly in a complete vertical circle of radius 2.00 m by a light string that is fixed at one end. The ball moves so fast that the string is always taut and perpendicular to the velocity of the ball. As the ball swings from its lowest point to its highest point

(Multiple Choice)
4.8/5
(29)

A 7.0-kg rock is subject to a variable force given by the equation F(x) = 6.0 N - (2.0 N/m)x + (6.0 N/m2)x2 If the rock initially is at rest at the origin, find its speed when it has moved 9.0 m.

(Short Answer)
4.8/5
(38)

An unusual spring has a restoring force of magnitude F = (2.00 N/m)x + (1.00 N/m2)x2, where x is the stretch of the spring from its equilibrium length. A 3.00-kg object is attached to this spring and released from rest after stretching the spring 1.50 m. If the object slides over a frictionless horizontal surface, how fast is it moving when the spring returns to its equilibrium length?

(Multiple Choice)
4.9/5
(34)

An object is acted upon by a force that represented by the force vs. position graph in the figure. What is the work done as the object moves (a) from 4 m to 6 m? (b) from 6 m to 12 m? An object is acted upon by a force that represented by the force vs. position graph in the figure. What is the work done as the object moves (a) from 4 m to 6 m? (b) from 6 m to 12 m?

(Short Answer)
4.9/5
(34)

The force on a 3.00-kg object as a function of position is shown in the figure. If an object is moving at 2.50 m/s when it is located at x = 2.00 m, what will its speed be when it reaches x = 8.00 m? (Assume that the numbers on the graph are accurate to 3 significant figures.) The force on a 3.00-kg object as a function of position is shown in the figure. If an object is moving at 2.50 m/s when it is located at x = 2.00 m, what will its speed be when it reaches x = 8.00 m? (Assume that the numbers on the graph are accurate to 3 significant figures.)

(Multiple Choice)
4.8/5
(28)

A 4.00-kg mass is attached to a very light ideal spring hanging vertically and hangs at rest in the equilibrium position. The spring constant of the spring is 1.00 N/cm. The mass is pulled downward 2.00 cm and released. What is the speed of the mass when it is 1.00 cm above the point from which it was released?

(Multiple Choice)
4.9/5
(34)

A 5.00-kg box slides 4.00 m across the floor before coming to rest. What is the coefficient of kinetic friction between the floor and the box if the box had an initial speed of 3.00 m/s?

(Multiple Choice)
4.7/5
(38)

Three forces, F1 = 20.0 N, F2 = 40.0 N, and F3 = 10.0 N act on an object with a mass of 2.00 kg which can move along a frictionless inclined plane as shown in the figure. The questions refer to the instant when the object has moved through a distance of 0.600 m along the surface of the inclined plane in the upward direction. Calculate the amount of work done by (a) F1 (b) F2 (c) F3. Three forces, F<sub>1</sub> = 20.0 N, F<sub>2</sub> = 40.0 N, and F<sub>3</sub> = 10.0 N act on an object with a mass of 2.00 kg which can move along a frictionless inclined plane as shown in the figure. The questions refer to the instant when the object has moved through a distance of 0.600 m along the surface of the inclined plane in the upward direction. Calculate the amount of work done by (a) F<sub>1</sub> (b) F<sub>2</sub> (c) F<sub>3</sub>.

(Short Answer)
4.8/5
(37)

A 1000 kg car experiences a net force of 9500 N while decelerating from 30.0 m/s to 23.4 m/s. How far does it travel while slowing down?

(Multiple Choice)
4.8/5
(32)

Two objects, one of mass m and the other of mass 2m, are dropped from the top of a building. When they hit the ground

(Multiple Choice)
4.8/5
(28)

Consider a plot of the displacement (x) as a function of the applied force (F) for an ideal elastic spring. The slope of the curve would be

(Multiple Choice)
4.7/5
(36)

A graph of the force on an object as a function of its position is shown in the figure. Determine the amount of work done by this force on an object that moves from x = 1.0 m to x = 6.0 m. (Assume an accuracy of 2 significant figures for the numbers on the graph.) A graph of the force on an object as a function of its position is shown in the figure. Determine the amount of work done by this force on an object that moves from x = 1.0 m to x = 6.0 m. (Assume an accuracy of 2 significant figures for the numbers on the graph.)

(Multiple Choice)
4.8/5
(39)

In the figure, two identical springs have unstretched lengths of 0.25 m and spring constants of 300 N/m. The springs are attached to a small cube and stretched to a length L of 0.36 m as in Figure A. An external force P pulls the cube a distance D = 0.020 m to the right and holds it there. (See Figure B.) The work done by the external force P in pulling the cube 0.020 m is closest to In the figure, two identical springs have unstretched lengths of 0.25 m and spring constants of 300 N/m. The springs are attached to a small cube and stretched to a length L of 0.36 m as in Figure A. An external force P pulls the cube a distance D = 0.020 m to the right and holds it there. (See Figure B.) The work done by the external force P in pulling the cube 0.020 m is closest to

(Multiple Choice)
4.9/5
(33)

An object attached to an ideal massless spring is pulled across a frictionless surface. If the spring constant is 45 N/m and the spring is stretched by 0.88 m when the object is accelerating at 2.0 m/s2, what is the mass of the object?

(Multiple Choice)
4.7/5
(42)

If a force always acts perpendicular to an object's direction of motion, that force cannot change the object's kinetic energy.

(True/False)
4.9/5
(34)

A 4.0-kg object is moving with speed 2.0 m/s. A 1.0-kg object is moving with speed 4.0 m/s. Both objects encounter the same constant braking force, and are brought to rest. Which object travels the greater distance before stopping?

(Multiple Choice)
4.9/5
(26)
Showing 1 - 20 of 54
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)