Exam 2: Motion Along a Straight Line
Exam 1: Units, Physical Quantities, and Vectors107 Questions
Exam 2: Motion Along a Straight Line59 Questions
Exam 3: Motion in Two or Three Dimensions50 Questions
Exam 4: Newtons Laws of Motion44 Questions
Exam 5: Applying Newtons Laws95 Questions
Exam 6: Work and Kinetic Energy54 Questions
Exam 7: Potential Energy and Energy Conservation55 Questions
Exam 8: Momentum, Impulse, and Collisions50 Questions
Exam 9: Rotation of Rigid Bodies26 Questions
Exam 10: Equilibrium and Elasticity50 Questions
Exam 11: Fluid Mechanics50 Questions
Exam 12: Gravitation50 Questions
Exam 13: Periodic Motion50 Questions
Exam 14: Mechanical Waves44 Questions
Exam 15: Sound and Hearing66 Questions
Exam 16: Temperature and Heat63 Questions
Exam 17: Thermal Properties of Matter58 Questions
Exam 18: The First Law of Thermodynamics52 Questions
Exam 19: The Second Law of Thermodynamics50 Questions
Exam 20: Electric Charge and Electric Field58 Questions
Exam 21: Gausss Law41 Questions
Exam 22: Electric Potential55 Questions
Exam 23: Capacitance and Dielectrics52 Questions
Exam 24: Current, Resistance, and Electromotive Force50 Questions
Exam 25: Direct-Current Circuits53 Questions
Exam 26: Magnetic Field and Magnetic Forces36 Questions
Exam 27: Sources of Magnetic Field51 Questions
Exam 28: Electromagnetic Induction39 Questions
Exam 29: Inductance26 Questions
Exam 30: Alternating Current49 Questions
Exam 31: Electromagnetic Waves47 Questions
Exam 32: The Nature and Propagation of Light28 Questions
Exam 33: Geometric Optics81 Questions
Exam 34: Interference33 Questions
Exam 35: Diffraction49 Questions
Exam 36: Relativity51 Questions
Exam 37: Photons: Light Waves Behaving As Particles38 Questions
Exam 38: Particles Behaving As Waves52 Questions
Exam 39: Quantum Mechanics40 Questions
Exam 40: Atomic Structure41 Questions
Exam 41: Molecules and Condensed Matter31 Questions
Exam 42: Nuclear Physics89 Questions
Exam 43: Particle Physics and Cosmology44 Questions
Select questions type
Two identical stones are dropped from rest and feel no air resistance as they fall. Stone A is dropped from height h, and stone B is dropped from height 2h. If stone A takes time t to reach the ground, stone B will take time
Free
(Multiple Choice)
4.8/5
(40)
Correct Answer:
C
The position of an object as a function of time is given by x =bt2 - ct, where b = 2.0 m/s2 and c = 6.7 m/s, and x and t are in SI units. What is the instantaneous velocity of the object when 

Free
(Multiple Choice)
4.8/5
(33)
Correct Answer:
B
A toy rocket is launched vertically from ground level (y = 0.00 m), at time t = 0.00 s. The rocket engine provides constant upward acceleration during the burn phase. At the instant of engine burnout, the rocket has risen to 72 m and acquired a velocity of 30 m/s. The rocket continues to rise in unpowered flight, reaches maximum height, and falls back to the ground with negligible air resistance. The speed of the rocket upon impact on the ground is closest to
Free
(Multiple Choice)
5.0/5
(41)
Correct Answer:
A
If an object is accelerating toward a point, then it must be getting closer and closer to that point.
(True/False)
4.7/5
(39)
A package is dropped from a helicopter moving upward at 1.5 m/s. If it takes 16.0 s before the package strikes the ground, how high above the ground was the package when it was released if air resistance is negligible?
(Multiple Choice)
4.9/5
(33)
Suppose that an object is moving with constant nonzero acceleration. Which of the following is an accurate statement concerning its motion?
(Multiple Choice)
4.8/5
(34)
If the graph of the position as a function of time for an object is a horizontal line, that object cannot be accelerating.
(True/False)
4.7/5
(31)
A rocket takes off vertically from the launchpad with no initial velocity but a constant upward acceleration of 2.25 m/s2. At 15.4 s after blastoff, the engines fail completely so the only force on the rocket from then on is the pull of gravity.
(a) What is the maximum height the rocket will reach above the launchpad?
(b) How fast is the rocket moving at the instant before it crashes onto the launchpad?
(c) How long after engine failure does it take for the rocket to crash onto the launchpad?
(Short Answer)
4.8/5
(46)
The figure shows the position of an object (moving along a straight line) as a function of time. Assume two significant figures in each number. Which of the following statements about this object is true over the interval shown? 

(Multiple Choice)
4.9/5
(34)
To determine the height of a flagpole, Abby throws a ball straight up and times it. She sees that the ball goes by the top of the pole after 0.50 s and then reaches the top of the pole again after a total elapsed time of 4.1 s. How high is the pole above the point where the ball was launched? (You can ignore air resistance.)
(Multiple Choice)
4.8/5
(35)
Two objects are thrown from the top of a tall building and experience no appreciable air resistance. One is thrown up, and the other is thrown down, both with the same initial speed. What are their speeds when they hit the street?
(Multiple Choice)
4.9/5
(36)
Arthur and Betty start walking toward each other when they are 100 m apart. Arthur has a speed of 3.0 m/s and Betty has a speed of 2.0 m/s. Their dog, Spot, starts by Arthur's side at the same time and runs back and forth between them at 5.0 m/s. By the time Arthur and Betty meet, what distance has Spot run?
(Short Answer)
4.9/5
(38)
An object starts its motion with a constant velocity of 2.0 m/s toward the east. After 3.0 s, the object stops for 1.0 s. The object then moves toward the west a distance of 2.0 m in 3.0 s. The object continues traveling in the same direction, but increases its speed by 1.0 m/s for the next 2.0 s. Which graph below could represent the motion of this object?
(Multiple Choice)
4.8/5
(45)
A ball is projected upward at time t = 0.00 s, from a point on a roof 70 m above the ground and experiences negligible air resistance. The ball rises, then falls and strikes the ground. The initial velocity of the ball is 28.5 m/s. Consider all quantities as positive in the upward direction. The velocity of the ball when it is 39 m above the ground is closest to
(Multiple Choice)
4.7/5
(43)
The acceleration of an object as a function of time is given by a(t) = (3.00 m/s3)t, where t is in seconds. If the object is at rest at time t = 0.00 s, what is the velocity of the object at time t = 6.00 s?
(Multiple Choice)
4.8/5
(32)
A soccer ball is released from rest at the top of a grassy incline. After 8.6 seconds, the ball travels 87 meters and 1.0 s after this, the ball reaches the bottom of the incline.
(a) What was the magnitude of the ball's acceleration, assume it to be constant?
(b) How long was the incline?
(Short Answer)
4.8/5
(40)
Two identical objects A and B fall from rest from different heights to the ground and feel no appreciable air resistance. If object B takes TWICE as long as object A to reach the ground, what is the ratio of the heights from which A and B fell?
(Multiple Choice)
4.7/5
(32)
An airplane that is flying level needs to accelerate from a speed of 2.00 × 102 m/s to a speed of 2.40 × 102 m/s while it flies a distance of 1.20 km. What must be the acceleration of the plane?
(Multiple Choice)
4.8/5
(25)
The velocity of an object as a function of time is given by v(t) = 2.00 m/s + (3.00 m/s) t - (1.0 m/s2) t2. Determine the instantaneous acceleration of the object at time t = 5.00 s.
(Multiple Choice)
4.9/5
(35)
An object is moving in a straight line along the x-axis. A plot of its velocity in the x direction as a function of time is shown in the figure. Which graph represents its acceleration in the x direction as a function of time? 

(Multiple Choice)
4.9/5
(28)
Showing 1 - 20 of 59
Filters
- Essay(0)
- Multiple Choice(0)
- Short Answer(0)
- True False(0)
- Matching(0)